[gmx-users] implementing Ewald 3D correction algorithm
Rui Qiao
ruiqiao at ews.uiuc.edu
Thu Jan 17 19:56:27 CET 2002
Dear All:
I posted a question on dealing reduced periodicity for study of
channel flow where electrostatic interaction is important. Thanks for the
replies I've got, I think I do find a suitable algorithm, i.e. Ewald
summatation with correction. (J. of Chem Phys, vol 111, No, 7,
pp3155-3162).
The alogrithm is very simple:
a. do Ewald summation, you can use whatever method you want,
e.g. PME, P3M and so on;
b. Add a correction term to force and potential term. For the
force, it is simply (assume no periodicity in z-direction):
Fx = Fx + 0 (no correction in x and y direction)
Fy = Fy + 0
Fz = Fz - 4*pi*q_i/(slab_volume)*M_z
wherre M_z is total system dipole moment in z direction. i.e
M_z = sum(q_i * z_i).
One can define slab_volume to be a user-defined variable to pass
to Gromacs, and can access q_i(change of atom i) easily, and the only
thing left is calculation of M_z. Because the code is parralleled, I do
not know how to access the position and charge of ALL atoms because each
node probably know nothing about the other nodes.
So I am wondering if someone has the experience of writing
parallel code can enlight me on how to access such variable. It must be a
simple thing to do, and if one do it in a proper way, 30 minutes is more
than enough.
All the comments and suggestion are appreciated.
sincerely,
Rui
------------------------
Rui Qiao
Research Assistant
Beckman Institute, UIUC
More information about the gromacs.org_gmx-users
mailing list