[gmx-users] mdrun crash when -np 8, not when -np 4

Malcolm Gillies malcolm.b.gillies at anu.edu.au
Fri Aug 22 04:36:01 CEST 2003


I have an mdrun job which crashes when I attempt to run it over 8
processors, but which appears to run fine with 4 processors. Any
suggestions?

I'm running Gromacs 3.1.4 on Alpha system. The mdp file and log files
are attached (I'm using PME).

The stack trace on crash:

prun: /opt/gromacs-3.1.4nf2/alphaev68-dec-osf5.1/bin/mdrun_mpi (pid 13747743) killed by signal 11 (SIGSEGV)
prun: generating backtrace for /opt/gromacs-3.1.4nf2/alphaev68-dec-osf5.1/bin/mdrun_mpi /local/core/rms/291775/core.mdrun_mpi.sc89.0
Welcome to the Ladebug Debugger Version 67 (built Mar 10 2002 for Compaq Tru64 UNIX)
------------------
object file name: /opt/gromacs-3.1.4nf2/alphaev68-dec-osf5.1/bin/mdrun_mpi
core file name: /local/core/rms/291775/core.mdrun_mpi.sc89.0
Reading symbolic information ...done
Core file produced from executable 'mdrun_mpi'
Thread 8 terminated at PC 0x12010c120 by signal SEGV
Stack trace for thread 8
>0  0x12010c120 in angles(...) in /opt/gromacs-3.1.4nf2/alphaev68-dec-osf5.1/bin/mdrun_mpi
#1  0x12010ab70 in calc_bonds(...) in /opt/gromacs-3.1.4nf2/alphaev68-dec-osf5.1/bin/mdrun_mpi
#2  0x1200915d0 in force(...) in /opt/gromacs-3.1.4nf2/alphaev68-dec-osf5.1/bin/mdrun_mpi
#3  0x120081240 in do_force(...) in /opt/gromacs-3.1.4nf2/alphaev68-dec-osf5.1/bin/mdrun_mpi
#4  0x12007af54 in do_md(...) in /opt/gromacs-3.1.4nf2/alphaev68-dec-osf5.1/bin/mdrun_mpi
#5  0x120079b9c in mdrunner(...) in /opt/gromacs-3.1.4nf2/alphaev68-dec-osf5.1/bin/mdrun_mpi
#6  0x12007cad0 in main(...) in /opt/gromacs-3.1.4nf2/alphaev68-dec-osf5.1/bin/mdrun_mpi
#7  0x12006aed8 in __start(...) in /opt/gromacs-3.1.4nf2/alphaev68-dec-osf5.1/bin/mdrun_mpi
                                                                                
Stack trace for thread 7
#0  0x3ff801374e8 in __syscall(...) in /usr/shlib/libc.so
#1  0x300010195c0 in elan3_syscall_lwp(ctx=Info: no allocation applies for symbol ctx at the current PC
<no value>) "syscall_dunix.c":201
#2  0x30001007ff8 in elan3_lwp(arg=0x140022800) "elanlib.c":85
                                                                                
prun: dumping elan exception state for /opt/gromacs-3.1.4nf2/alphaev68-dec-osf5.1/bin/mdrun_mpi /local/core/rms/291775/core.mdrun_mpi.sc89.0
edb: found exception list at 4102bde0
edb: exceptions from '/opt/gromacs-3.1.4nf2/alphaev68-dec-osf5.1/bin/mdrun_mpi'
prun:

cheers,

Malcolm
--
Malcolm Gillies <Malcolm.B.Gillies at anu.edu.au>
Postdoctoral Fellow, Computational Proteomics and Therapy Design Group,
John Curtin School of Medical Research, Australian National University
-------------- next part --------------
title               =  MD
cpp                 =  /lib/cpp
constraints         =  hbonds
integrator          =  md
dt                  =  0.001     ; ps !
nsteps              =  1000000   ; total 500 ps.
nstcomm             =  1
nstxout             =  10000
nstvout             =  10000
nstfout             =  0
nstlist             =  10
ns_type             =  grid
rlist               =  1.2
rcoulomb            =  1.2
rvdw                =  1.2
coulombtype         =  PME
rcoulomb_switch     =  0.0
dispcorr            =  EnerPres
epsilon_surface     =  78.0
fourierspacing      =  0.1
pmeorder            =  6
optimizefft         =  no
; Nose-Hoover coupling is on in two groups
Tcoupl              =  Nose-Hoover
tau_t               =  0.1      0.1
tc-grps             =  protein  sol
ref_t               =  300      300
; Pressure coupling is on
Pcoupl              =  Parrinello-Rahman
Pcoupltype          =  isotropic
tau_p               =  0.5
compressibility     =  4.5e-5
ref_p               =  1.0
; Generate velocites is on at 300 K.
gen_vel             =  yes
gen_temp            =  300.0
gen_seed            =  173529
-------------- next part --------------
Log file opened: nodeid 0, nnodes = 8, host = unknown, process = 13747743
                         :-)  G  R  O  M  A  C  S  (-:

                   GROningen MAchine for Chemical Simulation

                            :-)  VERSION 3.1.4  (-:


       Copyright (c) 1991-2002, University of Groningen, The Netherlands
         This program is free software; you can redistribute it and/or
          modify it under the terms of the GNU General Public License
         as published by the Free Software Foundation; either version 2
             of the License, or (at your option) any later version.

                              :-)  mdrun_mpi  (-:


++++++++ PLEASE CITE THE FOLLOWING REFERENCE ++++++++
E. Lindahl and B. Hess and D. van der Spoel
GROMACS 3.0: A package for molecular simulation and trajectory analysis
J. Mol. Mod. 7 (2001) pp. 306-317
-------- -------- --- Thank You --- -------- --------


++++++++ PLEASE CITE THE FOLLOWING REFERENCE ++++++++
H. J. C. Berendsen, D. van der Spoel and R. van Drunen
GROMACS: A message-passing parallel molecular dynamics implementation
Comp. Phys. Comm. 91 (1995) pp. 43-56
-------- -------- --- Thank You --- -------- --------

CPU=  0, lastcg= 4371, targetcg=21620, myshift=    5
CPU=  1, lastcg= 8677, targetcg=25926, myshift=    5
CPU=  2, lastcg=12980, targetcg=30229, myshift=    5
CPU=  3, lastcg=17283, targetcg=   35, myshift=    5
CPU=  4, lastcg=21586, targetcg= 4338, myshift=    4
CPU=  5, lastcg=25889, targetcg= 8641, myshift=    4
CPU=  6, lastcg=30193, targetcg=12945, myshift=    4
CPU=  7, lastcg=34496, targetcg=17248, myshift=    4
nsb->shift =   5, nsb->bshift=  0
Listing Scalars
nsb->nodeid:         0
nsb->nnodes:      8
nsb->cgtotal: 34497
nsb->natoms:  103277
nsb->shift:       5
nsb->bshift:      0
Nodeid   index  homenr  cgload  workload
     0       0   12910    4372      4372
     1   12910   12910    8678      8678
     2   25820   12909   12981     12981
     3   38729   12909   17284     17284
     4   51638   12909   21587     21587
     5   64547   12909   25890     25890
     6   77456   12912   30194     30194
     7   90368   12909   34497     34497

parameters of the run (nodeid=0):
input record:
   integrator           = md
   nsteps               = 1000000
   ns_type              = Grid
   nstlist              = 10
   ndelta               = 2
   bDomDecomp           = FALSE
   decomp_dir           = 0
   nstcomm              = 1
   nstlog               = 100
   nstxout              = 10000
   nstvout              = 10000
   nstfout              = 0
   nstenergy            = 100
   nstxtcout            = 0
   init_t               = 0
   delta_t              = 0.001
   xtcprec              = 1000
   nkx                  = 96
   nky                  = 112
   nkz                  = 104
   pme_order            = 6
   ewald_rtol           = 1e-05
   ewald_geometry       = 0
   epsilon_surface      = 78
   optimize_fft         = FALSE
   ePBC                 = xyz
   bUncStart            = FALSE
   bShakeSOR            = FALSE
   etc                  = Nose-Hoover
   epc                  = Parrinello-Rahman
   epctype              = Isotropic
   tau_p                = 0.5
   ref_p (3x3):
      ref_p[    0]={ 1.00000e+00,  0.00000e+00,  0.00000e+00}
      ref_p[    1]={ 0.00000e+00,  1.00000e+00,  0.00000e+00}
      ref_p[    2]={ 0.00000e+00,  0.00000e+00,  1.00000e+00}
   compress (3x3):
      compress[    0]={ 4.50000e-05,  0.00000e+00,  0.00000e+00}
      compress[    1]={ 0.00000e+00,  4.50000e-05,  0.00000e+00}
      compress[    2]={ 0.00000e+00,  0.00000e+00,  4.50000e-05}
   bSimAnn              = FALSE
   zero_temp_time       = 0
   rlist                = 1.2
   coulombtype          = PME
   rcoulomb_switch      = 0
   rcoulomb             = 1.2
   vdwtype              = Cut-off
   rvdw_switch          = 0
   rvdw                 = 1.2
   epsilon_r            = 1
   DispCorr             = EnerPres
   fudgeQQ              = 0.5
   free_energy          = no
   init_lambda          = 0
   sc_alpha             = 0
   sc_sigma             = 0.3
   delta_lambda         = 0
   disre_weighting      = Conservative
   disre_mixed          = FALSE
   dr_fc                = 1000
   dr_tau               = 0
   nstdisreout          = 100
   orires_fc            = 0
   orires_tau           = 0
   nstorireout          = 100
   em_stepsize          = 0.01
   em_tol               = 100
   niter                = 20
   fc_stepsize          = 0
   nstcgsteep           = 1000
   ConstAlg             = Lincs
   shake_tol            = 0.0001
   lincs_order          = 4
   lincs_warnangle      = 30
   bd_temp              = 300
   bd_fric              = 0
   ld_seed              = 1993
   cos_accel            = 0
   userint1             = 0
   userint2             = 0
   userint3             = 0
   userint4             = 0
   userreal1            = 0
   userreal2            = 0
   userreal3            = 0
   userreal4            = 0
grpopts:
   nrdf:	     42165.4      172852
   ref_t:	         300         300
   tau_t:	         0.1         0.1
   acc:	           0           0           0
   nfreeze:           N           N           N
   energygrp_excl[  0]: 0
   efield-x:
      n = 0
   efield-xt:
      n = 0
   efield-y:
      n = 0
   efield-yt:
      n = 0
   efield-z:
      n = 0
   efield-zt:
      n = 0
box (3x3):
   box[    0]={ 9.05361e+00,  0.00000e+00,  0.00000e+00}
   box[    1]={ 0.00000e+00,  1.08158e+01,  0.00000e+00}
   box[    2]={ 0.00000e+00,  0.00000e+00,  1.01414e+01}
ekin (3x3):
   ekin[    0]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
   ekin[    1]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
   ekin[    2]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
pres (3x3):
   pres[    0]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
   pres[    1]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
   pres[    2]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
vir (3x3):
   vir[    0]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
   vir[    1]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
   vir[    2]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
There are 0 atoms for free energy perturbation
Max number of bonds per atom is 4
Table routines are used for coulomb: TRUE
Table routines are used for vdw:     FALSE
Using a Gaussian width (1/beta) of 0.384195 nm for Ewald
Cut-off's:   NS: 1.2   Coulomb: 1.2   LJ: 1.2
Generated table with 500 data points for COUL.
Tabscale = 500 points/nm
Generated table with 500 data points for LJ6.
Tabscale = 500 points/nm
Generated table with 500 data points for LJ12.
Tabscale = 500 points/nm
Generated table with 900 data points for Ewald.
Tabscale = 500 points/nm
Generated table with 900 data points for LJ6.
Tabscale = 500 points/nm
Generated table with 900 data points for LJ12.
Tabscale = 500 points/nm
Going to determine what solvent types we have.
There are 28815 molecules, 34497 charge groups and 103277 atoms
There are 0 optimized solvent molecules on node 0
There are 0 optimized water molecules on node 0
Will do PME sum in reciprocal space.

++++++++ PLEASE CITE THE FOLLOWING REFERENCE ++++++++
U. Essman, L. Perela, M. L. Berkowitz, T. Darden, H. Lee and L. G. Pedersen 
{A smooth particle mesh Ewald method
J. Chem. Phys. 103 (1995) pp. 8577-8592
-------- -------- --- Thank You --- -------- --------

Parallelized PME sum used.
Using the FFTW library (Fastest Fourier Transform in the West)
PARALLEL FFT DATA:
   local_nx:                  12  local_x_start:                   0
   local_ny_after_transpose:  14  local_y_start_after_transpose    0
   total_local_size:         142464
Center of mass motion removal mode is Linear
We have the following groups for center of mass motion removal:
  0:  rest, initial mass: 639645
There are: 12910 Atom
Removing pbc first time
Done rmpbc

Constraining the starting coordinates (step -2)

++++++++ PLEASE CITE THE FOLLOWING REFERENCE ++++++++
B. Hess and H. Bekker and H. J. C. Berendsen and J. G. E. M. Fraaije
LINCS: A Linear Constraint Solver for molecular simulations
J. Comp. Chem. 18 (1997) pp. 1463-1472
-------- -------- --- Thank You --- -------- --------


Initializing LINear Constraint Solver
  number of constraints is 6446
  average number of constraints coupled to one constraint is 0.9

-------------- next part --------------
Log file opened: nodeid 1, nnodes = 8, host = unknown, process = 13747744
There are 0 atoms for free energy perturbation
Max number of bonds per atom is 4
Table routines are used for coulomb: TRUE
Table routines are used for vdw:     FALSE
Using a Gaussian width (1/beta) of 0.384195 nm for Ewald
Cut-off's:   NS: 1.2   Coulomb: 1.2   LJ: 1.2
Generated table with 500 data points for COUL.
Tabscale = 500 points/nm
Generated table with 500 data points for LJ6.
Tabscale = 500 points/nm
Generated table with 500 data points for LJ12.
Tabscale = 500 points/nm
Generated table with 900 data points for Ewald.
Tabscale = 500 points/nm
Generated table with 900 data points for LJ6.
Tabscale = 500 points/nm
Generated table with 900 data points for LJ12.
Tabscale = 500 points/nm
Going to determine what solvent types we have.
There are 28815 molecules, 34497 charge groups and 103277 atoms
There are 0 optimized solvent molecules on node 1
There are 2990 optimized water molecules on node 1
Will do PME sum in reciprocal space.

++++++++ PLEASE CITE THE FOLLOWING REFERENCE ++++++++
U. Essman, L. Perela, M. L. Berkowitz, T. Darden, H. Lee and L. G. Pedersen 
{A smooth particle mesh Ewald method
J. Chem. Phys. 103 (1995) pp. 8577-8592
-------- -------- --- Thank You --- -------- --------

Parallelized PME sum used.
Using the FFTW library (Fastest Fourier Transform in the West)
PARALLEL FFT DATA:
   local_nx:                  12  local_x_start:                  12
   local_ny_after_transpose:  14  local_y_start_after_transpose   14
   total_local_size:         142464
Center of mass motion removal mode is Linear
We have the following groups for center of mass motion removal:
  0:  rest, initial mass: 639645
There are: 12910 Atom
Removing pbc first time
Done rmpbc

Constraining the starting coordinates (step -2)

++++++++ PLEASE CITE THE FOLLOWING REFERENCE ++++++++
S. Miyamoto and P. A. Kollman
SETTLE: An Analytical Version of the SHAKE and RATTLE Algorithms for Rigid
Water Models
J. Comp. Chem. 13 (1992) pp. 952-962
-------- -------- --- Thank You --- -------- --------


++++++++ PLEASE CITE THE FOLLOWING REFERENCE ++++++++
B. Hess and H. Bekker and H. J. C. Berendsen and J. G. E. M. Fraaije
LINCS: A Linear Constraint Solver for molecular simulations
J. Comp. Chem. 18 (1997) pp. 1463-1472
-------- -------- --- Thank You --- -------- --------


Initializing LINear Constraint Solver
  number of constraints is 1938
  average number of constraints coupled to one constraint is 0.9

-------------- next part --------------
Log file opened: nodeid 2, nnodes = 8, host = unknown, process = 13747741
There are 0 atoms for free energy perturbation
Max number of bonds per atom is 2
Table routines are used for coulomb: TRUE
Table routines are used for vdw:     FALSE
Using a Gaussian width (1/beta) of 0.384195 nm for Ewald
Cut-off's:   NS: 1.2   Coulomb: 1.2   LJ: 1.2
Generated table with 500 data points for COUL.
Tabscale = 500 points/nm
Generated table with 500 data points for LJ6.
Tabscale = 500 points/nm
Generated table with 500 data points for LJ12.
Tabscale = 500 points/nm
Generated table with 900 data points for Ewald.
Tabscale = 500 points/nm
Generated table with 900 data points for LJ6.
Tabscale = 500 points/nm
Generated table with 900 data points for LJ12.
Tabscale = 500 points/nm
Going to determine what solvent types we have.
There are 28815 molecules, 34497 charge groups and 103277 atoms
There are 0 optimized solvent molecules on node 2
There are 4303 optimized water molecules on node 2
Will do PME sum in reciprocal space.

++++++++ PLEASE CITE THE FOLLOWING REFERENCE ++++++++
U. Essman, L. Perela, M. L. Berkowitz, T. Darden, H. Lee and L. G. Pedersen 
{A smooth particle mesh Ewald method
J. Chem. Phys. 103 (1995) pp. 8577-8592
-------- -------- --- Thank You --- -------- --------

Parallelized PME sum used.
Using the FFTW library (Fastest Fourier Transform in the West)
PARALLEL FFT DATA:
   local_nx:                  12  local_x_start:                  24
   local_ny_after_transpose:  14  local_y_start_after_transpose   28
   total_local_size:         142464
Center of mass motion removal mode is Linear
We have the following groups for center of mass motion removal:
  0:  rest, initial mass: 639645
There are: 12909 Atom
Removing pbc first time
Done rmpbc

Constraining the starting coordinates (step -2)

++++++++ PLEASE CITE THE FOLLOWING REFERENCE ++++++++
S. Miyamoto and P. A. Kollman
SETTLE: An Analytical Version of the SHAKE and RATTLE Algorithms for Rigid
Water Models
J. Comp. Chem. 13 (1992) pp. 952-962
-------- -------- --- Thank You --- -------- --------

-------------- next part --------------
Log file opened: nodeid 3, nnodes = 8, host = unknown, process = 13747747
There are 0 atoms for free energy perturbation
Max number of bonds per atom is 2
Table routines are used for coulomb: TRUE
Table routines are used for vdw:     FALSE
Using a Gaussian width (1/beta) of 0.384195 nm for Ewald
Cut-off's:   NS: 1.2   Coulomb: 1.2   LJ: 1.2
Generated table with 500 data points for COUL.
Tabscale = 500 points/nm
Generated table with 500 data points for LJ6.
Tabscale = 500 points/nm
Generated table with 500 data points for LJ12.
Tabscale = 500 points/nm
Generated table with 900 data points for Ewald.
Tabscale = 500 points/nm
Generated table with 900 data points for LJ6.
Tabscale = 500 points/nm
Generated table with 900 data points for LJ12.
Tabscale = 500 points/nm
Going to determine what solvent types we have.
There are 28815 molecules, 34497 charge groups and 103277 atoms
There are 0 optimized solvent molecules on node 3
There are 4303 optimized water molecules on node 3
Will do PME sum in reciprocal space.

++++++++ PLEASE CITE THE FOLLOWING REFERENCE ++++++++
U. Essman, L. Perela, M. L. Berkowitz, T. Darden, H. Lee and L. G. Pedersen 
{A smooth particle mesh Ewald method
J. Chem. Phys. 103 (1995) pp. 8577-8592
-------- -------- --- Thank You --- -------- --------

Parallelized PME sum used.
Using the FFTW library (Fastest Fourier Transform in the West)
PARALLEL FFT DATA:
   local_nx:                  12  local_x_start:                  36
   local_ny_after_transpose:  14  local_y_start_after_transpose   42
   total_local_size:         142464
Center of mass motion removal mode is Linear
We have the following groups for center of mass motion removal:
  0:  rest, initial mass: 639645
There are: 12909 Atom
Removing pbc first time
Done rmpbc

Constraining the starting coordinates (step -2)

++++++++ PLEASE CITE THE FOLLOWING REFERENCE ++++++++
S. Miyamoto and P. A. Kollman
SETTLE: An Analytical Version of the SHAKE and RATTLE Algorithms for Rigid
Water Models
J. Comp. Chem. 13 (1992) pp. 952-962
-------- -------- --- Thank You --- -------- --------

-------------- next part --------------
Log file opened: nodeid 4, nnodes = 8, host = unknown, process = 14744071
There are 0 atoms for free energy perturbation
Max number of bonds per atom is 2
Table routines are used for coulomb: TRUE
Table routines are used for vdw:     FALSE
Using a Gaussian width (1/beta) of 0.384195 nm for Ewald
Cut-off's:   NS: 1.2   Coulomb: 1.2   LJ: 1.2
Generated table with 500 data points for COUL.
Tabscale = 500 points/nm
Generated table with 500 data points for LJ6.
Tabscale = 500 points/nm
Generated table with 500 data points for LJ12.
Tabscale = 500 points/nm
Generated table with 900 data points for Ewald.
Tabscale = 500 points/nm
Generated table with 900 data points for LJ6.
Tabscale = 500 points/nm
Generated table with 900 data points for LJ12.
Tabscale = 500 points/nm
Going to determine what solvent types we have.
There are 28815 molecules, 34497 charge groups and 103277 atoms
There are 0 optimized solvent molecules on node 4
There are 4303 optimized water molecules on node 4
Will do PME sum in reciprocal space.

++++++++ PLEASE CITE THE FOLLOWING REFERENCE ++++++++
U. Essman, L. Perela, M. L. Berkowitz, T. Darden, H. Lee and L. G. Pedersen 
{A smooth particle mesh Ewald method
J. Chem. Phys. 103 (1995) pp. 8577-8592
-------- -------- --- Thank You --- -------- --------

Parallelized PME sum used.
Using the FFTW library (Fastest Fourier Transform in the West)
PARALLEL FFT DATA:
   local_nx:                  12  local_x_start:                  48
   local_ny_after_transpose:  14  local_y_start_after_transpose   56
   total_local_size:         142464
Center of mass motion removal mode is Linear
We have the following groups for center of mass motion removal:
  0:  rest, initial mass: 639645
There are: 12909 Atom
Removing pbc first time
Done rmpbc

Constraining the starting coordinates (step -2)

++++++++ PLEASE CITE THE FOLLOWING REFERENCE ++++++++
S. Miyamoto and P. A. Kollman
SETTLE: An Analytical Version of the SHAKE and RATTLE Algorithms for Rigid
Water Models
J. Comp. Chem. 13 (1992) pp. 952-962
-------- -------- --- Thank You --- -------- --------

-------------- next part --------------
Log file opened: nodeid 5, nnodes = 8, host = unknown, process = 14744072
There are 0 atoms for free energy perturbation
Max number of bonds per atom is 2
Table routines are used for coulomb: TRUE
Table routines are used for vdw:     FALSE
Using a Gaussian width (1/beta) of 0.384195 nm for Ewald
Cut-off's:   NS: 1.2   Coulomb: 1.2   LJ: 1.2
Generated table with 500 data points for COUL.
Tabscale = 500 points/nm
Generated table with 500 data points for LJ6.
Tabscale = 500 points/nm
Generated table with 500 data points for LJ12.
Tabscale = 500 points/nm
Generated table with 900 data points for Ewald.
Tabscale = 500 points/nm
Generated table with 900 data points for LJ6.
Tabscale = 500 points/nm
Generated table with 900 data points for LJ12.
Tabscale = 500 points/nm
Going to determine what solvent types we have.
There are 28815 molecules, 34497 charge groups and 103277 atoms
There are 0 optimized solvent molecules on node 5
There are 4303 optimized water molecules on node 5
Will do PME sum in reciprocal space.

++++++++ PLEASE CITE THE FOLLOWING REFERENCE ++++++++
U. Essman, L. Perela, M. L. Berkowitz, T. Darden, H. Lee and L. G. Pedersen 
{A smooth particle mesh Ewald method
J. Chem. Phys. 103 (1995) pp. 8577-8592
-------- -------- --- Thank You --- -------- --------

Parallelized PME sum used.
Using the FFTW library (Fastest Fourier Transform in the West)
PARALLEL FFT DATA:
   local_nx:                  12  local_x_start:                  60
   local_ny_after_transpose:  14  local_y_start_after_transpose   70
   total_local_size:         142464
Center of mass motion removal mode is Linear
We have the following groups for center of mass motion removal:
  0:  rest, initial mass: 639645
There are: 12909 Atom
Removing pbc first time
Done rmpbc

Constraining the starting coordinates (step -2)

++++++++ PLEASE CITE THE FOLLOWING REFERENCE ++++++++
S. Miyamoto and P. A. Kollman
SETTLE: An Analytical Version of the SHAKE and RATTLE Algorithms for Rigid
Water Models
J. Comp. Chem. 13 (1992) pp. 952-962
-------- -------- --- Thank You --- -------- --------

-------------- next part --------------
Log file opened: nodeid 6, nnodes = 8, host = unknown, process = 14744073
There are 0 atoms for free energy perturbation
Max number of bonds per atom is 2
Table routines are used for coulomb: TRUE
Table routines are used for vdw:     FALSE
Using a Gaussian width (1/beta) of 0.384195 nm for Ewald
Cut-off's:   NS: 1.2   Coulomb: 1.2   LJ: 1.2
Generated table with 500 data points for COUL.
Tabscale = 500 points/nm
Generated table with 500 data points for LJ6.
Tabscale = 500 points/nm
Generated table with 500 data points for LJ12.
Tabscale = 500 points/nm
Generated table with 900 data points for Ewald.
Tabscale = 500 points/nm
Generated table with 900 data points for LJ6.
Tabscale = 500 points/nm
Generated table with 900 data points for LJ12.
Tabscale = 500 points/nm
Going to determine what solvent types we have.
There are 28815 molecules, 34497 charge groups and 103277 atoms
There are 0 optimized solvent molecules on node 6
There are 4304 optimized water molecules on node 6
Will do PME sum in reciprocal space.

++++++++ PLEASE CITE THE FOLLOWING REFERENCE ++++++++
U. Essman, L. Perela, M. L. Berkowitz, T. Darden, H. Lee and L. G. Pedersen 
{A smooth particle mesh Ewald method
J. Chem. Phys. 103 (1995) pp. 8577-8592
-------- -------- --- Thank You --- -------- --------

Parallelized PME sum used.
Using the FFTW library (Fastest Fourier Transform in the West)
PARALLEL FFT DATA:
   local_nx:                  12  local_x_start:                  72
   local_ny_after_transpose:  14  local_y_start_after_transpose   84
   total_local_size:         142464
Center of mass motion removal mode is Linear
We have the following groups for center of mass motion removal:
  0:  rest, initial mass: 639645
There are: 12912 Atom
Removing pbc first time
Done rmpbc

Constraining the starting coordinates (step -2)

++++++++ PLEASE CITE THE FOLLOWING REFERENCE ++++++++
S. Miyamoto and P. A. Kollman
SETTLE: An Analytical Version of the SHAKE and RATTLE Algorithms for Rigid
Water Models
J. Comp. Chem. 13 (1992) pp. 952-962
-------- -------- --- Thank You --- -------- --------

-------------- next part --------------
Log file opened: nodeid 7, nnodes = 8, host = unknown, process = 14744074
There are 0 atoms for free energy perturbation
Max number of bonds per atom is 2
Table routines are used for coulomb: TRUE
Table routines are used for vdw:     FALSE
Using a Gaussian width (1/beta) of 0.384195 nm for Ewald
Cut-off's:   NS: 1.2   Coulomb: 1.2   LJ: 1.2
Generated table with 500 data points for COUL.
Tabscale = 500 points/nm
Generated table with 500 data points for LJ6.
Tabscale = 500 points/nm
Generated table with 500 data points for LJ12.
Tabscale = 500 points/nm
Generated table with 900 data points for Ewald.
Tabscale = 500 points/nm
Generated table with 900 data points for LJ6.
Tabscale = 500 points/nm
Generated table with 900 data points for LJ12.
Tabscale = 500 points/nm
Going to determine what solvent types we have.
There are 28815 molecules, 34497 charge groups and 103277 atoms
There are 0 optimized solvent molecules on node 7
There are 4303 optimized water molecules on node 7
Will do PME sum in reciprocal space.

++++++++ PLEASE CITE THE FOLLOWING REFERENCE ++++++++
U. Essman, L. Perela, M. L. Berkowitz, T. Darden, H. Lee and L. G. Pedersen 
{A smooth particle mesh Ewald method
J. Chem. Phys. 103 (1995) pp. 8577-8592
-------- -------- --- Thank You --- -------- --------

Parallelized PME sum used.
Using the FFTW library (Fastest Fourier Transform in the West)
PARALLEL FFT DATA:
   local_nx:                  12  local_x_start:                  84
   local_ny_after_transpose:  14  local_y_start_after_transpose   98
   total_local_size:         142464
Center of mass motion removal mode is Linear
We have the following groups for center of mass motion removal:
  0:  rest, initial mass: 639645
There are: 12909 Atom
Removing pbc first time
Done rmpbc

Constraining the starting coordinates (step -2)

++++++++ PLEASE CITE THE FOLLOWING REFERENCE ++++++++
S. Miyamoto and P. A. Kollman
SETTLE: An Analytical Version of the SHAKE and RATTLE Algorithms for Rigid
Water Models
J. Comp. Chem. 13 (1992) pp. 952-962
-------- -------- --- Thank You --- -------- --------



More information about the gromacs.org_gmx-users mailing list