[gmx-users] crash on Source code file: nsgrid.c, line: 226

Egidijus Kuprusevicius ekuprusevicius at yahoo.com
Fri Dec 5 12:50:16 CET 2008


Dear developers,
I have got this message on the crash (system with 192 molecules, paralellipiped)
 
-------------------------------------------------------
Program mdrunmpi, VERSION 3.3
Source code file: nsgrid.c, line: 226
Range checking error:
Explanation: During neighborsearching, we assign each particle to a grid
based on its coordinates. If your system contains collisions or parameter
errors that give particles very high velocities you might end up with some
coordinates being +-Infinity or NaN (not-a-number). Obviously, we cannot
put these on a grid, so this is usually where we detect those errors.
Make sure your system is properly energy-minimized and that the potential
energy seems reasonable before trying again.
Variable ci has value 134. It should have been within [ 0 .. 128 ]
Please report this to the mailing list (gmx-users at gromacs.org)
-------------------------------------------------------
 
and mdout.mdp for this run is:
 
 
; RUN CONTROL PARAMETERS
integrator = md
; Start time and timestep in ps
tinit = 0
dt = 0.003
nsteps = 20000000
; For exact run continuation or redoing part of a run
init_step = 0
; mode for center of mass motion removal
comm-mode = Linear
; number of steps for center of mass motion removal
nstcomm = 1
; group(s) for center of mass motion removal
comm-grps = 
; LANGEVIN DYNAMICS OPTIONS
; Friction coefficient (amu/ps) and random seed
bd-fric = 0
ld-seed = 1993
; ENERGY MINIMIZATION OPTIONS
; Force tolerance and initial step-size
emtol = 10
emstep = 0.01
; Max number of iterations in relax_shells
niter = 20
; Step size (ps^2) for minimization of flexible constraints
fcstep = 0
; Frequency of steepest descents steps when doing CG
nstcgsteep = 1000
nbfgscorr = 10
; OUTPUT CONTROL OPTIONS
; Output frequency for coords (x), velocities (v) and forces (f)
nstxout = 1000
nstvout = 1000
nstfout = 0
; Checkpointing helps you continue after crashes
nstcheckpoint = 1000
; Output frequency for energies to log file and energy file
nstlog = 1000
nstenergy = 1000
; Output frequency and precision for xtc file
nstxtcout = 0
xtc-precision = 1000
; This selects the subset of atoms for the xtc file. You can
; select multiple groups. By default all atoms will be written.
xtc-grps = 
; Selection of energy groups
energygrps = System
; NEIGHBORSEARCHING PARAMETERS
; nblist update frequency
nstlist = 10
; ns algorithm (simple or grid)
ns_type = grid
; Periodic boundary conditions: xyz (default), no (vacuum)
; or full (infinite systems only)
pbc = xyz
; nblist cut-off 
rlist = 1.0
domain-decomposition = no
; OPTIONS FOR ELECTROSTATICS AND VDW
; Method for doing electrostatics
coulombtype = PME
rcoulomb-switch = 0
rcoulomb = 1.0
; Relative dielectric constant for the medium and the reaction field
epsilon-r = 1.0
epsilon_rf = 1
; Method for doing Van der Waals
vdw-type = Cut-off
; cut-off lengths 
rvdw-switch = 0
rvdw = 1.4
; Apply long range dispersion corrections for Energy and Pressure
DispCorr = EnerPres
; Extension of the potential lookup tables beyond the cut-off
table-extension = 1
; Seperate tables between energy group pairs
energygrp_table = 
; Spacing for the PME/PPPM FFT grid
fourierspacing = 0.12
; FFT grid size, when a value is 0 fourierspacing will be used
fourier_nx = 0
fourier_ny = 0
fourier_nz = 0
; EWALD/PME/PPPM parameters
pme_order = 4
ewald_rtol = 1e-05
ewald_geometry = 3d
epsilon_surface = 0
optimize_fft = yes
; GENERALIZED BORN ELECTROSTATICS
; Algorithm for calculating Born radii
gb_algorithm = Still
; Frequency of calculating the Born radii inside rlist
nstgbradii = 1
; Cutoff for Born radii calculation; the contribution from atoms
; between rlist and rgbradii is updated every nstlist steps
rgbradii = 2
; Salt concentration in M for Generalized Born models
gb_saltconc = 0
; IMPLICIT SOLVENT (for use with Generalized Born electrostatics)
implicit_solvent = No
; OPTIONS FOR WEAK COUPLING ALGORITHMS
; Temperature coupling 
Tcoupl = Berendsen
; Groups to couple separately
Tc-grps = System
; Time constant (ps) and reference temperature (K)
tau_T = 0.1
ref_T = 312
; Pressure coupling 
Pcoupl = Berendsen
Pcoupltype = Isotropic
; Time constant (ps), compressibility (1/bar) and reference P (bar)
tau_P = 5.0
compressibility = 4.5e-5
ref_P = 1.0
; Random seed for Andersen thermostat
andersen_seed = 815131
; OPTIONS FOR QMMM calculations
QMMM = no
; Groups treated Quantum Mechanically
QMMM-grps = 
; QM method 
QMmethod = 
; QMMM scheme 
QMMMscheme = normal
; QM basisset 
QMbasis = 
; QM charge 
QMcharge = 
; QM multiplicity 
QMmult = 
; Surface Hopping 
SH = 
; CAS space options 
CASorbitals = 
CASelectrons = 
SAon = 
SAoff = 
SAsteps = 
; Scale factor for MM charges
MMChargeScaleFactor = 1
; Optimization of QM subsystem
bOPT = 
bTS = 
; SIMULATED ANNEALING 
; Type of annealing for each temperature group (no/single/periodic)
annealing = 
; Number of time points to use for specifying annealing in each group
annealing_npoints = 
; List of times at the annealing points for each group
annealing_time = 
; Temp. at each annealing point, for each group.
annealing_temp = 
; GENERATE VELOCITIES FOR STARTUP RUN
gen_vel = no
gen_temp = 299
gen_seed = 173529
; OPTIONS FOR BONDS 
constraints = all-bonds
; Type of constraint algorithm
constraint-algorithm = lincs
; Do not constrain the start configuration
unconstrained-start = no
; Use successive overrelaxation to reduce the number of shake iterations
Shake-SOR = no
; Relative tolerance of shake
shake_tol = 0.0001
; Highest order in the expansion of the constraint coupling matrix
lincs-order = 4
; Number of iterations in the final step of LINCS. 1 is fine for
; normal simulations, but use 2 to conserve energy in NVE runs.
; For energy minimization with constraints it should be 4 to 8.
lincs-iter = 2
; Lincs will write a warning to the stderr if in one step a bond
; rotates over more degrees than
lincs-warnangle = 30
; Convert harmonic bonds to morse potentials
morse = no
; ENERGY GROUP EXCLUSIONS
; Pairs of energy groups for which all non-bonded interactions are excluded
energygrp_excl = 
; NMR refinement stuff 
; Distance restraints type: No, Simple or Ensemble
disre = No
; Force weighting of pairs in one distance restraint: Conservative or Equal
disre-weighting = Conservative
; Use sqrt of the time averaged times the instantaneous violation
disre-mixed = no
disre-fc = 1000
disre-tau = 0
; Output frequency for pair distances to energy file
nstdisreout = 100
; Orientation restraints: No or Yes
orire = no
; Orientation restraints force constant and tau for time averaging
orire-fc = 0
orire-tau = 0
orire-fitgrp = 
; Output frequency for trace(SD) and S to energy file
nstorireout = 100
; Dihedral angle restraints: No, Simple or Ensemble
dihre = No
dihre-fc = 1000
dihre-tau = 0
; Output frequency for dihedral values to energy file
nstdihreout = 100
; Free energy control stuff
free-energy = no
init-lambda = 0
delta-lambda = 0
sc-alpha = 0
sc-power = 1
sc-sigma = 0.3
; Non-equilibrium MD stuff
acc-grps = 
accelerate = 
freezegrps = 
freezedim = 
cos-acceleration = 0
deform = 
; Electric fields 
; Format is number of terms (int) and for all terms an amplitude (real)
; and a phase angle (real)
E-x = 
E-xt = 
E-y = 
E-yt = 
E-z = 
E-zt = 
; User defined thingies
user1-grps = 
user2-grps = 
userint1 = 0
userint2 = 0
userint3 = 0
userint4 = 0
userreal1 = 0
userreal2 = 0
userreal3 = 0
userreal4 = 0
 
 
 
what's happened? why?
 
Thank you
 
Egis


      
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://maillist.sys.kth.se/pipermail/gromacs.org_gmx-users/attachments/20081205/49af9315/attachment.html>


More information about the gromacs.org_gmx-users mailing list