[gmx-users] Probably a bug in nstenergy?
Lee Soin
nomadoro at gmail.com
Mon Apr 20 10:42:51 CEST 2009
I'm using version 4.0.4. Here's my .mdp file:
; VARIOUS PREPROCESSING OPTIONS
; Preprocessor information: use cpp syntax.
; e.g.: -I/home/joe/doe -I/home/mary/hoe
include =
; e.g.: -DI_Want_Cookies -DMe_Too
define = -DPOSRES
; RUN CONTROL PARAMETERS
integrator = md
; Start time and timestep in ps
tinit = 0
dt = 0.002
nsteps = 10000000
; For exact run continuation or redoing part of a run
; Part index is updated automatically on checkpointing (keeps files
separate)
simulation_part = 1
init_step = 0
; mode for center of mass motion removal
comm-mode = Linear
; number of steps for center of mass motion removal
nstcomm = 1
; group(s) for center of mass motion removal
comm-grps =
; LANGEVIN DYNAMICS OPTIONS
; Friction coefficient (amu/ps) and random seed
bd-fric = 0
ld_seed = 1993
; ENERGY MINIMIZATION OPTIONS
; Force tolerance and initial step-size
emtol = 0.000001
emstep = 0.01
; Max number of iterations in relax_shells
niter = 100
; Step size (ps^2) for minimization of flexible constraints
fcstep = 0
; Frequency of steepest descents steps when doing CG
nstcgsteep = 1000
nbfgscorr = 10
; TEST PARTICLE INSERTION OPTIONS
rtpi = 0.05
; OUTPUT CONTROL OPTIONS
; Output frequency for coords (x), velocities (v) and forces (f)
nstxout = 50000
nstvout = 0
nstfout = 0
; Output frequency for energies to log file and energy file
nstlog = 100
nstenergy = 0
; Output frequency and precision for xtc file
nstxtcout = 10000
xtc_precision = 1000
; This selects the subset of atoms for the xtc file. You can
; select multiple groups. By default all atoms will be written.
xtc-grps =
; Selection of energy groups
energygrps =
; NEIGHBORSEARCHING PARAMETERS
; nblist update frequency
nstlist = 10
; ns algorithm (simple or grid)
ns_type = grid
; Periodic boundary conditions: xyz, no, xy
pbc = xyz
periodic_molecules = no
; nblist cut-off
rlist = 1
; OPTIONS FOR ELECTROSTATICS AND VDW
; Method for doing electrostatics
coulombtype = PME
rcoulomb_switch = 0
rcoulomb = 1.
; Relative dielectric constant for the medium and the reaction field
epsilon_r = 1
epsilon_rf = 1
; Method for doing Van der Waals
vdw-type = Cut-off
; cut-off lengths
rvdw_switch = 0
rvdw = 1.0
; Apply long range dispersion corrections for Energy and Pressure
DispCorr = No
; Extension of the potential lookup tables beyond the cut-off
table-extension = 1
; Seperate tables between energy group pairs
energygrp_table =
; Spacing for the PME/PPPM FFT grid
fourierspacing = 0.12
; FFT grid size, when a value is 0 fourierspacing will be used
fourier_nx = 0
fourier_ny = 0
fourier_nz = 0
; EWALD/PME/PPPM parameters
pme_order = 4
ewald_rtol = 1e-05
ewald_geometry = 3d
epsilon_surface = 0
optimize_fft = no
; IMPLICIT SOLVENT ALGORITHM
implicit_solvent = No
; GENERALIZED BORN ELECTROSTATICS
; Algorithm for calculating Born radii
gb_algorithm = Still
; Frequency of calculating the Born radii inside rlist
nstgbradii = 1
; Cutoff for Born radii calculation; the contribution from atoms
; between rlist and rgbradii is updated every nstlist steps
rgbradii = 2
; Dielectric coefficient of the implicit solvent
gb_epsilon_solvent = 80
; Salt concentration in M for Generalized Born models
gb_saltconc = 0
; Scaling factors used in the OBC GB model. Default values are OBC(II)
gb_obc_alpha = 1
gb_obc_beta = 0.8
gb_obc_gamma = 4.85
; Surface tension (kJ/mol/nm^2) for the SA (nonpolar surface) part of GBSA
; The default value (2.092) corresponds to 0.005 kcal/mol/Angstrom^2.
sa_surface_tension = 2.092
; OPTIONS FOR WEAK COUPLING ALGORITHMS
; Temperature coupling
Tcoupl = v-rescale
; Groups to couple separately
tc_grps = Protein Other
; Time constant (ps) and reference temperature (K)
tau_t = 0.1 0.1
ref_t = 300 300
; Pressure coupling
Pcoupl = Berendsen
Pcoupltype = isotropic
; Time constant (ps), compressibility (1/bar) and reference P (bar)
tau_p = 1.0
compressibility = 4.5e-5
ref_p = 1.0
; Scaling of reference coordinates, No, All or COM
refcoord_scaling = No
; Random seed for Andersen thermostat
andersen_seed = 815131
; OPTIONS FOR QMMM calculations
QMMM = no
; Groups treated Quantum Mechanically
QMMM-grps =
; QM method
QMmethod =
; QMMM scheme
QMMMscheme = normal
; QM basisset
QMbasis =
; QM charge
QMcharge =
; QM multiplicity
QMmult =
; Surface Hopping
SH =
; CAS space options
CASorbitals =
CASelectrons =
SAon =
SAoff =
SAsteps =
; Scale factor for MM charges
MMChargeScaleFactor = 1
; Optimization of QM subsystem
bOPT =
bTS =
; SIMULATED ANNEALING
; Type of annealing for each temperature group (no/single/periodic)
annealing = no no
; Number of time points to use for specifying annealing in each group
annealing_npoints =
; List of times at the annealing points for each group
annealing_time =
; Temp. at each annealing point, for each group.
annealing_temp =
; GENERATE VELOCITIES FOR STARTUP RUN
gen_vel = no
gen_temp = 300
gen_seed = 173529
; OPTIONS FOR BONDS
constraints = all-bonds
; Type of constraint algorithm
constraint_algorithm = Lincs
; Do not constrain the start configuration
continuation = no
; Use successive overrelaxation to reduce the number of shake iterations
Shake-SOR = no
; Relative tolerance of shake
shake_tol = 1e-04
; Highest order in the expansion of the constraint coupling matrix
lincs_order = 4
; Number of iterations in the final step of LINCS. 1 is fine for
; normal simulations, but use 2 to conserve energy in NVE runs.
; For energy minimization with constraints it should be 4 to 8.
lincs-iter = 1
; Lincs will write a warning to the stderr if in one step a bond
; rotates over more degrees than
lincs_warnangle = 30
; Convert harmonic bonds to morse potentials
morse = no
; ENERGY GROUP EXCLUSIONS
; Pairs of energy groups for which all non-bonded interactions are excluded
energygrp_excl =
; WALLS
; Number of walls, type, atom types, densities and box-z scale factor for
Ewald
nwall = 0
wall_type = 9-3
wall_r_linpot = -1
wall_atomtype =
wall_density =
wall_ewald_zfac = 3
; COM PULLING
; Pull type: no, umbrella, constraint or constant_force
pull = umbrella
; Pull geometry: distance, direction, cylinder or position
pull_geometry = distance
; Select components for the pull vector. default: Y Y Y
pull_dim = Y Y Y
; Cylinder radius for dynamic reaction force groups (nm)
pull_r1 = 1
; Switch from r1 to r0 in case of dynamic reaction force
pull_r0 = 1.5
pull_constr_tol = 1e-06
pull_start = yes
pull_nstxout = 10
pull_nstfout = 1
; Number of pull groups
pull_ngroups = 1
; Group name, weight (default all 1), vector, init, rate (nm/ps),
kJ/(mol*nm^2)
pull_group0 = GRP2
pull_weights0 =
pull_pbcatom0 = 0
pull_group1 = GRP1
pull_weights1 =
pull_pbcatom1 = 0
pull_vec1 = 0.0 0.0 0.0
pull_init1 = 0.0
pull_rate1 = 0
pull_k1 = 1000
pull_kB1 = 0
; NMR refinement stuff
; Distance restraints type: No, Simple or Ensemble
disre = simple
; Force weighting of pairs in one distance restraint: Conservative or Equal
disre_weighting = Equal
; Use sqrt of the time averaged times the instantaneous violation
disre_mixed = no
disre_fc = 1000
disre_tau = 1.25
; Output frequency for pair distances to energy file
nstdisreout = 100
; Orientation restraints: No or Yes
orire = no
; Orientation restraints force constant and tau for time averaging
orire-fc = 0
orire-tau = 0
orire-fitgrp =
; Output frequency for trace(SD) and S to energy file
nstorireout = 100
; Dihedral angle restraints: No or Yes
dihre = No
dihre-fc = 1000
; Free energy control stuff
free_energy = no
init_lambda = 0
delta_lambda = 0
sc-alpha = 0
sc-power = 0
sc-sigma = 0.3
couple-moltype =
couple-lambda0 = vdw-q
couple-lambda1 = vdw-q
couple-intramol = no
; Non-equilibrium MD stuff
acc-grps =
accelerate =
freezegrps =
freezedim =
cos-acceleration = 0
deform =
; Electric fields
; Format is number of terms (int) and for all terms an amplitude (real)
; and a phase angle (real)
E-x =
E-xt =
E-y =
E-yt =
E-z =
E-zt =
; User defined thingies
user1-grps =
user2-grps =
userint1 = 0
userint2 = 0
userint3 = 0
userint4 = 0
userreal1 = 0
userreal2 = 0
userreal3 = 0
userreal4 = 0
2009/4/20 Mark Abraham <Mark.Abraham at anu.edu.au>
> Lee Soin wrote:
>
>> Hello!
>> I'm experiencing a strange thing. I've tried to set nstenergy in .mdp file
>> to various values(0, 1, 1000000) but there seems to be no change in the
>> output frequency in energy file and the file always attains several
>> gigabytes easily. Probably a bug?
>>
>
> Probably a mis-use, mis-spelling or a mis-observation :-) I'm not aware of
> any GROMACS version that had such a problem, and you'd have to be able to
> reproduce it in GROMACS 4.0.4 and at least post your .mdp file before it
> might be consistent with a bug.
>
> Mark
>
> _______________________________________________
> gmx-users mailing list gmx-users at gromacs.org
> http://www.gromacs.org/mailman/listinfo/gmx-users
> Please search the archive at http://www.gromacs.org/search before posting!
> Please don't post (un)subscribe requests to the list. Use the www interface
> or send it to gmx-users-request at gromacs.org.
> Can't post? Read http://www.gromacs.org/mailing_lists/users.php
>
--
SUN Li
Department of Physics
Nanjing University, China
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://maillist.sys.kth.se/pipermail/gromacs.org_gmx-users/attachments/20090420/91657c63/attachment.html>
More information about the gromacs.org_gmx-users
mailing list