[gmx-users] Error during NVT equillibration with nvt.log file

ram bio rmbio861 at gmail.com
Fri Oct 16 18:19:52 CEST 2009


Dear Justin,

Thanks and I tried your suggestion, that is minimizing the system
without restraints and increasing the Fmax to 1000, the mdp file used
is as follows:

; minim.mdp - used as input into grompp to generate em.tpr
; Parameters describing what to do, when to stop and what to save
integrator	= steep		; Algorithm (steep = steepest descent minimization)
emtol		= 1000.0  	; Stop minimization when the maximum force < 1000.0 kJ/mol/nm
emstep          = 0.01          ; Energy step size
nsteps		= 50000	  	; Maximum number of (minimization) steps to perform

; Parameters describing how to find the neighbors of each atom and how
to calculate the interactions
nstlist		= 1		; Frequency to update the neighbor list and long range forces
ns_type		= grid		; Method to determine neighbor list (simple, grid)
rlist		= 1.2		; Cut-off for making neighbor list (short range forces)
coulombtype	= PME		; Treatment of long range electrostatic interactions
rcoulomb	= 1.2		; Short-range electrostatic cut-off
rvdw		= 1.2		; Short-range Van der Waals cut-off
pbc		= xyz 		; Periodic Boundary Conditions (yes/no)

and the ouput is :

Steepest Descents converged to Fmax < 1000 in 1192 steps
Potential Energy  = -4.5402134e+05
Maximum force     =  9.6024463e+02 on atom 3573
Norm of force     =  3.8811920e+01

Later is used this as input for the NVT equillibration with the
following nvt.mdp file:

title		= NVT equilibration
define		= -DPOSRES	; position restrain the protein
; Run parameters
integrator	= md		; leap-frog integrator
nsteps		= 50000		; 2 * 50000 = 100 ps
dt		= 0.002		; 2 fs
; Output control
nstxout		= 100		; save coordinates every 0.2 ps
nstvout		= 100		; save velocities every 0.2 ps
nstenergy	= 100		; save energies every 0.2 ps
nstlog		= 100		; update log file every 0.2 ps
; Bond parameters
continuation	= no		; first dynamics run
constraint_algorithm = lincs	; holonomic constraints
constraints	= all-bonds	; all bonds (even heavy atom-H bonds) constrained
lincs_iter	= 1		; accuracy of LINCS
lincs_order	= 4		; also related to accuracy
; Neighborsearching
ns_type		= grid		; search neighboring grid cels
nstlist		= 5		; 10 fs
rlist		= 1.2		; short-range neighborlist cutoff (in nm)
rcoulomb	= 1.2		; short-range electrostatic cutoff (in nm)
rvdw		= 1.2		; short-range van der Waals cutoff (in nm)
; Electrostatics
coulombtype	= PME		; Particle Mesh Ewald for long-range electrostatics
pme_order	= 4		; cubic interpolation
fourierspacing	= 0.16		; grid spacing for FFT
; Temperature coupling is on
tcoupl		= V-rescale	; modified Berendsen thermostat
tc-grps		= Protein DPPC SOL_CL-	; three coupling groups - more accurate
tau_t		= 0.1	0.1	0.1	; time constant, in ps
ref_t		= 323 	323	323	; reference temperature, one for each group, in K
; Pressure coupling is off
pcoupl		= no 		; no pressure coupling in NVT
; Periodic boundary conditions
pbc		= xyz		; 3-D PBC
; Dispersion correction
DispCorr	= EnerPres	; account for cut-off vdW scheme
; Velocity generation
gen_vel		= yes		; assign velocities from Maxwell distribution
gen_temp	= 323		; temperature for Maxwell distribution
gen_seed	= -1		; generate a random seed
; COM motion removal
; These options remove motion of the protein/bilayer relative to the
solvent/ions
nstcomm		= 1
comm-mode	= Linear
comm-grps	= Protein_DPPC SOL_CL-

and the ouput nvt.log file is as under:

Input Parameters:
   integrator           = md
   nsteps               = 50000
   init_step            = 0
   ns_type              = Grid
   nstlist              = 5
   ndelta               = 2
   nstcomm              = 1
   comm_mode            = Linear
   nstlog               = 100
   nstxout              = 100
   nstvout              = 100
   nstfout              = 0
   nstenergy            = 100
   nstxtcout            = 0
   init_t               = 0
   delta_t              = 0.002
   xtcprec              = 1000
   nkx                  = 48
   nky                  = 48
   nkz                  = 60
   pme_order            = 4
   ewald_rtol           = 1e-05
   ewald_geometry       = 0
   epsilon_surface      = 0
   optimize_fft         = FALSE
   ePBC                 = xyz
   bPeriodicMols        = FALSE
   bContinuation        = FALSE
   bShakeSOR            = FALSE
   etc                  = V-rescale
   epc                  = No
   epctype              = Isotropic
   tau_p                = 1
   ref_p (3x3):
      ref_p[    0]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
      ref_p[    1]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
      ref_p[    2]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
   compress (3x3):
      compress[    0]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
      compress[    1]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
      compress[    2]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
   refcoord_scaling     = No
   posres_com (3):
      posres_com[0]= 0.00000e+00
      posres_com[1]= 0.00000e+00
      posres_com[2]= 0.00000e+00
   posres_comB (3):
      posres_comB[0]= 0.00000e+00
      posres_comB[1]= 0.00000e+00
      posres_comB[2]= 0.00000e+00
   andersen_seed        = 815131
   rlist                = 1.2
   rtpi                 = 0.05
   coulombtype          = PME
   rcoulomb_switch      = 0
   rcoulomb             = 1.2
   vdwtype              = Cut-off
   rvdw_switch          = 0
   rvdw                 = 1.2
   epsilon_r            = 1
   epsilon_rf           = 1
   tabext               = 1
   implicit_solvent     = No
   gb_algorithm         = Still
   gb_epsilon_solvent   = 80
   nstgbradii           = 1
   rgbradii             = 2
   gb_saltconc          = 0
   gb_obc_alpha         = 1
   gb_obc_beta          = 0.8
   gb_obc_gamma         = 4.85
   sa_surface_tension   = 2.092
   DispCorr             = EnerPres
   free_energy          = no
   init_lambda          = 0
   sc_alpha             = 0
   sc_power             = 0
   sc_sigma             = 0.3
   delta_lambda         = 0
   nwall                = 0
   wall_type            = 9-3
   wall_atomtype[0]     = -1
   wall_atomtype[1]     = -1
   wall_density[0]      = 0
   wall_density[1]      = 0
   wall_ewald_zfac      = 3
   pull                 = no
   disre                = No
   disre_weighting      = Conservative
   disre_mixed          = FALSE
   dr_fc                = 1000
   dr_tau               = 0
   nstdisreout          = 100
   orires_fc            = 0
   orires_tau           = 0
   nstorireout          = 100
   dihre-fc             = 1000
   em_stepsize          = 0.01
   em_tol               = 10
   niter                = 20
   fc_stepsize          = 0
   nstcgsteep           = 1000
   nbfgscorr            = 10
   ConstAlg             = Lincs
   shake_tol            = 1e-04
   lincs_order          = 4
   lincs_warnangle      = 30
   lincs_iter           = 1
   bd_fric              = 0
   ld_seed              = 1993
   cos_accel            = 0
   deform (3x3):
      deform[    0]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
      deform[    1]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
      deform[    2]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
   userint1             = 0
   userint2             = 0
   userint3             = 0
   userint4             = 0
   userreal1            = 0
   userreal2            = 0
   userreal3            = 0
   userreal4            = 0
grpopts:
   nrdf:     6048.01       12219       45018
   ref_t:         323         323         323
   tau_t:         0.1         0.1         0.1
anneal:          No          No          No
ann_npoints:           0           0           0
   acc:	           0           0           0
   nfreeze:           N           N           N
   energygrp_flags[  0]: 0
   efield-x:
      n = 0
   efield-xt:
      n = 0
   efield-y:
      n = 0
   efield-yt:
      n = 0
   efield-z:
      n = 0
   efield-zt:
      n = 0
   bQMMM                = FALSE
   QMconstraints        = 0
   QMMMscheme           = 0
   scalefactor          = 1
qm_opts:
   ngQM                 = 0
Table routines are used for coulomb: TRUE
Table routines are used for vdw:     FALSE
Will do PME sum in reciprocal space.

++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
U. Essman, L. Perela, M. L. Berkowitz, T. Darden, H. Lee and L. G. Pedersen
A smooth particle mesh Ewald method
J. Chem. Phys. 103 (1995) pp. 8577-8592
-------- -------- --- Thank You --- -------- --------

Using a Gaussian width (1/beta) of 0.384195 nm for Ewald
Cut-off's:   NS: 1.2   Coulomb: 1.2   LJ: 1.2
System total charge: 0.000
Generated table with 1100 data points for Ewald.
Tabscale = 500 points/nm
Generated table with 1100 data points for LJ6.
Tabscale = 500 points/nm
Generated table with 1100 data points for LJ12.
Tabscale = 500 points/nm
Generated table with 1100 data points for 1-4 COUL.
Tabscale = 500 points/nm
Generated table with 1100 data points for 1-4 LJ6.
Tabscale = 500 points/nm
Generated table with 1100 data points for 1-4 LJ12.
Tabscale = 500 points/nm

Enabling SPC water optimization for 7497 molecules.

Configuring nonbonded kernels...
Testing AMD 3DNow support... not present.
Testing ia32 SSE support... present.


Removing pbc first time

Initializing LINear Constraint Solver

++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
B. Hess and H. Bekker and H. J. C. Berendsen and J. G. E. M. Fraaije
LINCS: A Linear Constraint Solver for molecular simulations
J. Comp. Chem. 18 (1997) pp. 1463-1472
-------- -------- --- Thank You --- -------- --------

The number of constraints is 9045

++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
S. Miyamoto and P. A. Kollman
SETTLE: An Analytical Version of the SHAKE and RATTLE Algorithms for Rigid
Water Models
J. Comp. Chem. 13 (1992) pp. 952-962
-------- -------- --- Thank You --- -------- --------

Center of mass motion removal mode is Linear
We have the following groups for center of mass motion removal:
  0:  Protein_DPPC
  1:  SOL_CL-

++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
G. Bussi, D. Donadio and M. Parrinello
Canonical sampling through velocity rescaling
J. Chem. Phys. 126 (2007) pp. 014101
-------- -------- --- Thank You --- -------- --------

There are: 31609 Atoms
Max number of connections per atom is 28
Total number of connections is 138849
Max number of graph edges per atom is 4
Total number of graph edges is 48078

Constraining the starting coordinates (step 0)

Constraining the coordinates at t0-dt (step 0)
RMS relative constraint deviation after constraining: 4.83e-04
Initial temperature: 333.793 K

Started mdrun on node 0 Sun Jul  5 18:04:45 2009

           Step           Time         Lambda
              0        0.00000        0.00000

Grid: 10 x 10 x 13 cells
Long Range LJ corr.: <C6> 9.7327e-04
Long Range LJ corr.: Epot   -2200.19, Pres:   -136.406, Vir:    2200.19
   Energies (kJ/mol)
          Angle       G96Angle    Proper Dih. Ryckaert-Bell.  Improper Dih.
    1.19670e+04    8.38636e+03    8.15057e+03    4.20390e+03    3.08430e+03
          LJ-14     Coulomb-14        LJ (SR)  Disper. corr.   Coulomb (SR)
    4.45274e+03    5.37063e+04    3.47509e+06   -2.20019e+03   -4.22052e+05
   Coul. recip. Position Rest.      Potential    Kinetic En.   Total Energy
   -1.63954e+05    1.03877e+01    2.98084e+06    5.03020e+09    5.03318e+09
  Conserved En.    Temperature Pressure (bar)  Cons. rmsd ()
    5.03318e+09    1.91196e+07    1.03974e+08    9.31478e+00

and if i remove the the constraints and lowering the time step using
the following nvt.mdp file it is running:
title		= NVT equilibration
define		= -DPOSRES	; position restrain the protein
; Run parameters
integrator	= md		; leap-frog integrator
nsteps		= 100000		; 1 * 100000 = 100 ps
dt		= 0.001		; 1 fs
; Output control
nstxout		= 100		; save coordinates every 0.2 ps
nstvout		= 100		; save velocities every 0.2 ps
nstenergy	= 100		; save energies every 0.2 ps
nstlog		= 100		; update log file every 0.2 ps
; Bond parameters
continuation	= no		; first dynamics run
constraint_algorithm = lincs	; holonomic constraints
constraints	= none   	; all bonds (even heavy atom-H bonds) constrained
lincs_iter	= 1		; accuracy of LINCS
lincs_order	= 4		; also related to accuracy
; Neighborsearching
ns_type		= grid		; search neighboring grid cels
nstlist		= 5		; 10 fs
rlist		= 1.2		; short-range neighborlist cutoff (in nm)
rcoulomb	= 1.2		; short-range electrostatic cutoff (in nm)
rvdw		= 1.2		; short-range van der Waals cutoff (in nm)
; Electrostatics
coulombtype	= PME		; Particle Mesh Ewald for long-range electrostatics
pme_order	= 4		; cubic interpolation
fourierspacing	= 0.16		; grid spacing for FFT
; Temperature coupling is on
tcoupl		= V-rescale	; modified Berendsen thermostat
tc-grps		= Protein DPPC SOL_CL-	; three coupling groups - more accurate
tau_t		= 0.1	0.1	0.1	; time constant, in ps
ref_t		= 323 	323	323	; reference temperature, one for each group, in K
; Pressure coupling is off
pcoupl		= no 		; no pressure coupling in NVT
; Periodic boundary conditions
pbc		= xyz		; 3-D PBC
; Dispersion correction
DispCorr	= EnerPres	; account for cut-off vdW scheme
; Velocity generation
gen_vel		= yes		; assign velocities from Maxwell distribution
gen_temp	= 323		; temperature for Maxwell distribution
gen_seed	= -1		; generate a random seed
; COM motion removal
; These options remove motion of the protein/bilayer relative to the
solvent/ions
nstcomm		= 1
comm-mode	= Linear
comm-grps	= Protein_DPPC SOL_CL-

please suggest me is it ok to remove the constraints and run the NVT
equillibration.

Thanks

Ram







On Fri, Oct 16, 2009 at 9:27 PM, Justin A. Lemkul <jalemkul at vt.edu> wrote:
>
>
> ram bio wrote:
>>
>> Dear Gromacs users,
>>
>> I am doing protein in lipid-bilayer simulation and i am following the
>> procedure as per justin tutorial. I am able to insert the protein in
>> lipid bilayer and minimize the system as per Inflategro
>> procedure,during the total procedure the system was minimized in every
>> step.Then, I solvated and ionized sytem and minimized using the
>> following mdp file:
>>
>> ; minim.mdp - used as input into grompp to generate em.tpr
>> ; Parameters describing what to do, when to stop and what to save
>> define = -DSTRONG_POSRES
>> integrator      = steep         ; Algorithm (steep = steepest descent
>> minimization)
>> emtol           = 500.0         ; Stop minimization when the maximum
>> force < 1000.0 kJ/mol/nm
>> emstep          = 0.01          ; Energy step size
>> nsteps          = 50000         ; Maximum number of (minimization)
>> steps to perform
>>
>> ; Parameters describing how to find the neighbors of each atom and how
>> to calculate the interactions
>> nstlist         = 1             ; Frequency to update the neighbor
>> list and long range forces
>> ns_type         = grid          ; Method to determine neighbor list
>> (simple, grid)
>> rlist           = 1.2           ; Cut-off for making neighbor list
>> (short range forces)
>> coulombtype     = PME           ; Treatment of long range
>> electrostatic interactions
>> rcoulomb        = 1.2           ; Short-range electrostatic cut-off
>> rvdw            = 1.2           ; Short-range Van der Waals cut-off
>> pbc             = xyz           ; Periodic Boundary Conditions (yes/no)
>>
>> the output was as follows:
>>
>> Steepest Descents converged to Fmax < 500 in 4770 steps
>> Potential Energy  = -3.8820288e+05
>> Maximum force     =  4.4803549e+02 on atom 3573
>> Norm of force     =  1.7854408e+01
>>
>> As the potential energy and Fmax values were agreeable , I proceeded
>> to equillibrate the system using NVT.
>>
>
> Did you minimize the structure without restraints, prior to NVT?
>
> <snip>
>
>>          Angle       G96Angle    Proper Dih. Ryckaert-Bell.  Improper Dih.
>>    2.20077e+04    8.54042e+03    6.78950e+03    4.34650e+03    3.03266e+03
>>          LJ-14     Coulomb-14        LJ (SR)  Disper. corr.   Coulomb (SR)
>>    4.76527e+03    5.50236e+04    8.36617e+06   -2.20019e+03   -4.46844e+05
>>   Coul. recip. Position Rest.      Potential    Kinetic En.   Total Energy
>>   -1.65524e+05    1.07769e+01    7.85612e+06    5.88813e+10    5.88892e+10
>>  Conserved En.    Temperature Pressure (bar)  Cons. rmsd ()
>>    5.88892e+10    2.23805e+08    1.21713e+09    3.10245e+01
>>
>
> In my experience, the combination of an astronomically high temperature and
> a repulsive temperature is indicative of restraining an unrestrainable
> starting structure.  Try the EM I suggested above.  Other than that, as I've
> suggested before, see the Advanced Troubleshooting page I created in the
> tutorial.
>
> -Justin
>
>> Please help me to proceed further and let me know where are the
>> mistakes lying and how to overcome them.
>>
>> Thanks in advance,
>>
>> Ram
>> _______________________________________________
>> gmx-users mailing list    gmx-users at gromacs.org
>> http://lists.gromacs.org/mailman/listinfo/gmx-users
>> Please search the archive at http://www.gromacs.org/search before posting!
>> Please don't post (un)subscribe requests to the list. Use the www
>> interface or send it to gmx-users-request at gromacs.org.
>> Can't post? Read http://www.gromacs.org/mailing_lists/users.php
>>
>
> --
> ========================================
>
> Justin A. Lemkul
> Ph.D. Candidate
> ICTAS Doctoral Scholar
> Department of Biochemistry
> Virginia Tech
> Blacksburg, VA
> jalemkul[at]vt.edu | (540) 231-9080
> http://www.bevanlab.biochem.vt.edu/Pages/Personal/justin
>
> ========================================
> _______________________________________________
> gmx-users mailing list    gmx-users at gromacs.org
> http://lists.gromacs.org/mailman/listinfo/gmx-users
> Please search the archive at http://www.gromacs.org/search before posting!
> Please don't post (un)subscribe requests to the list. Use the www interface
> or send it to gmx-users-request at gromacs.org.
> Can't post? Read http://www.gromacs.org/mailing_lists/users.php
>



More information about the gromacs.org_gmx-users mailing list