[gmx-users] Is anyone also using lammps?s

Peng Yi pengyi at MIT.EDU
Thu Oct 29 17:09:56 CET 2009


On Wed, 28 Oct 2009, Mark Abraham wrote:

> Peng Yi wrote:
>> 
>> I am trying to simulate alkane melt and found out that gromacs and lammps 
>> gave different results, particularly the bonded interaction energy.
>> I wonder if anyone has such experience.  Thanks,
>
> Even two installations of the same version of GROMACS can give different 
> results. The question is whether when using comparable model physics you 
> observe the same ensemble averages.
>
> Mark

Hi, Mark,

Thanks for reply!  The difference is statistically significant.  And I am
wondering if it is caused by the integrator: Leap-frog for Gromacs and
Velocity-verlet for Lammps.  Detail description of the comparison please
see below:

It is an NPT simulation of a melt of 240 n-octane molecules using
united-atom model, i.e., CHx group is considered as one atom.  There are
bond, angle, torsion and LJ interactions.  T=300K and P=1atm.

Lammps uses nose-hoover thermostat and barostat, and Gromacs uses
nose-hoover thermostat and Parranello-Rahman barostat.  Time constants for
thermostat and barostat are 0.02ps and 2.0ps, respectively.

If I use integration time 1fs, Lammps and Gromacs gave consistent results:
                     Lammps           Gromacs
Ebond(kJ/mol):        2092             2146
Eangle:               1757             1760
Etors:                2510             2500
Elj+corr:            -9238            -9350
Volume(nm^3):         66.7             66.5

where energy fluctuation is 100 kJ/mol and volume fluctuation is 1 nm^3,
Elj+corr is the total LJ energy including tail correction.

However, if I use integration time 2fs, Lammps results do not change 
much, but Gromacs results changed a lot:

                     Lammps           Gromacs
Ebond(kJ/mol):        2133             2700 
Eangle:               1799             1640
Etors:                2552             2200
Elj+corr:            -9292            -9886 
Volume:               66.7             64.0

The results given by Lammps is more reasonable because the Ebond should
be equal to the total # of bonds times 1/2k_BT and Eangle should be equal
to the total # of angles times 1/2k_BT.  At T=300K, 1/2k_BT=1.25 kJ/mol.
240 n-octanes have total 1680 bonds and 1440 angles.

The bond and angle interactions are both harmonic functions.  Bond
interaction constant kl=292880 kJ/mol/nm^2, corresponding to a bond
ossilation period 16 fs.

Is there something related to the integrator?

Here I attached my grompp.mdp and topol.top files.

##########
grompp.mdp
##########

; VARIOUS PREPROCESSING OPTIONS
title                    = Yo
cpp                      = /usr/bin/cpp
include                  = 
define                   =

; RUN CONTROL PARAMETERS
integrator               = md
tinit                    = 0
dt                       = 0.001
nsteps                   = 2000000
init_step                = 0
comm-mode                = Linear
nstcomm                  = 1
comm-grps                =

; OUTPUT CONTROL OPTIONS
nstxout                  = 5000
nstvout                  = 5000
nstfout                  = 5000
nstcheckpoint            = 10000
nstlog                   = 1000
nstenergy                = 1000
nstxtcout                = 5000
xtc-precision            = 1000
xtc-grps                 = 
energygrps               =

; NEIGHBORSEARCHING PARAMETERS
nstlist                  = 10
ns_type                  = grid
pbc                      = xyz
rlist                    = 1.0025
domain-decomposition     = no

; OPTIONS FOR ELECTROSTATICS AND VDW
coulombtype              = Cut-off
rcoulomb-switch          = 0
rcoulomb                 = 1.0025
epsilon-r                = 1
vdw-type                 = Cut-off
rvdw-switch              = 0		; default 
rvdw                     = 1.0025	; default 1 nm
DispCorr                 = EnerPres
;table-extension          = 1.5
fourierspacing           = 0.12
fourier_nx               = 0
fourier_ny               = 0
fourier_nz               = 0
pme_order                = 4
ewald_rtol               = 1e-05
ewald_geometry           = 3d
epsilon_surface          = 0
optimize_fft             = no


; OPTIONS FOR WEAK COUPLING ALGORITHMS
Tcoupl                   = nose-hoover
tc-grps                  = System
tau_t                    = 0.02
ref_t                    = 300.0
Pcoupl                   = Parrinello-Rahman
Pcoupltype               = isotropic
tau_p                    = 2.0
compressibility          = 4.5e-5
ref_p                    = 1.0
andersen_seed            = 815131

; GENERATE VELOCITIES FOR STARTUP RUN
gen_vel                  = yes
gen_temp                 = 300
gen_seed                 = 2009

; OPTIONS FOR BONDS 
constraints              = none
constraint-algorithm     = Lincs
unconstrained-start      = no
Shake-SOR                = no
shake-tol                = 1e-04
lincs-order              = 4
lincs-iter               = 1
lincs-warnangle          = 30
morse                    = no

; ENERGY GROUP EXCLUSIONS
; Pairs of energy groups for which all non-bonded interactions are excluded
energygrp_excl           =

; NMR refinement stuff 
disre                    = No
disre-weighting          = Conservative
disre-mixed              = no
disre-fc                 = 1000
disre-tau                = 0
nstdisreout              = 100
orire                    = no
orire-fc                 = 0
orire-tau                = 0
orire-fitgrp             = 
nstorireout              = 100
dihre                    = No
dihre-fc                 = 1000
dihre-tau                = 0
nstdihreout              = 100

#########
topol.top
#########

#include "ffG53a6.itp"

[atom-types]
;name	mass	charge	ptype	V/c6	W/c12
  CH2	14.0	0.00	A	0.0	0.0
  CH3	15.0	0.00	A	0.0	0.0

[nonbond-params]
; i     j     func    V/c6    W/c12
  CH2    CH2    1    0.0078   3.24e-5
  CH2    CH3    1    0.0078   3.24e-5
  CH3    CH3    1    0.0078   3.24e-5

[ moleculetype ]
; name  nrexcl
Octane1      3

[ atoms ]
;   nr    type   resnr  residu    atom    cgnr  charge
      1     CH3       1    C8       CH3      1	 0.0
      2     CH2       1    C8       CH2      2	 0.0
      3     CH2       1    C8       CH2      3	 0.0
      4     CH2       1    C8       CH2      4	 0.0
      5     CH2       1    C8       CH2      5	 0.0
      6     CH2       1    C8       CH2      6	 0.0
      7     CH2       1    C8       CH2      7	 0.0
      8     CH3       1    C8       CH3      8	 0.0

[ bonds ]
;  ai    aj funct         c0(nm)           c1(kJ/mol/nm^2)
     1	  2	1 	0.153	292880.0
     2	  3	1 	0.153	292880.0
     3	  4	1 	0.153	292880.0
     4	  5	1 	0.153	292880.0
     5	  6	1 	0.153	292880.0
     6	  7	1 	0.153	292880.0
     7	  8	1 	0.153	292880.0

[ pairs ]
;  ai    aj funct           c0           c1
;    1     4     1 0.000000e+00 0.000000e+00 
;    2     5     1 0.000000e+00 0.000000e+00 
;    3     6     1 0.000000e+00 0.000000e+00 
;    4     7     1 0.000000e+00 0.000000e+00 
;    5     8     1 0.000000e+00 0.000000e+00

[ angles ]
;  ai    aj    ak funct           c0(degree)           c1(kJ/mol/rad^-2)
      1     2     3     1         109.5	502.08
      2     3     4     1         109.5	502.08
      3     4     5     1         109.5	502.08
      4     5     6     1         109.5	502.08
      5     6     7     1         109.5	502.08
      6     7     8     1         109.5	502.08

[ dihedrals ]
;  ai    aj    ak    al funct    c0       c1       c2      c3      c4  c5
      1     2     3     4     3   6.4977   16.9868  3.6275  -27.112  0 0
      2     3     4     5     3   6.4977   16.9868  3.6275  -27.112  0 0
      3     4     5     6     3   6.4977   16.9868  3.6275  -27.112  0 0
      4     5     6     7     3   6.4977   16.9868  3.6275  -27.112  0 0
      5     6     7     8     3   6.4977   16.9868  3.6275  -27.112  0 0

[ system ]
octane melt

[ molecules ]
Octane1		240




More information about the gromacs.org_gmx-users mailing list