[gmx-users] double precision energy minimization show zero pressure in gromacs 4.5.5

Justin A. Lemkul jalemkul at vt.edu
Thu Apr 26 17:52:04 CEST 2012



On 4/26/12 11:00 AM, Yongchul Chung wrote:
> Hi all,
>
> I am carrying out energy minimization on bulk polymer system (N~20000) with
> integrator = l-bfgs in double precision gromacs 4.5.5.  I am using tabulated
> force-fields for bonded, and non-bonded interactions. In the force field, the
> coulombic interaction is set to zero, hence, the output is zero in md.log file.
>
> I used g_energy to check the energy and pressure of the system after the
> minimization is finished. For some reason, the pressure output for the system is
> 0 with gromacs 4.5.5. So I went back and checked the md.log file to see if this
> happens during the simulation or not, and I found at time = 0, the pressure is 0.
>
> I wanted to make sure that this has to do with gromacs version, and not how the
> mdp file is configured, so I did same minimization with gromacs 4.0.7. When
> using version 4.0.7 with the same input files, I get the pressure output just
> fine. The potential energy at the end of simulation for both cases are exactly
> the same (only difference is 4.0.7 converges at 1754 steps, and 4.5.5 converges
> at 2148 steps)
>
> It is possible that I am doing (or setting) something wrong since I'm using the
> same mdp file from 4.0.7 to 4.5.5. To check if I'm setting something wrong by
> default, I compared the md.log output between these two versions. It seems like
> there are a few new things with gromacs 4.5.5 that is missing in 4.0.7. For
> example, with 4.5.5
>
> nstcalcenergy = -1
> nstcouple = -1
> nstpcouple = -1
> rlistlong = 1.1
>
> I see nstcalcenergy is the frequency of energy output during calculation so it
> does not affect any calculation. Also since I am not coupling my system to
> thermal/pressure bath, nstcouple, nspcouple, and rlistlong does not mean much here.
>
> So I suppose I can repeat the calculation again with 4.0.7 instead. But since
> I've already carried out lots of calculation with 4.5.5, I kind of do not want
> to repeat the steps again in calculating pressure values, if possible. If
> someone can help me with this, it would be great.
>
> I am appending snippet of md.log output from 4.5.5 and 4.0.7 below as a reference.
>

It does not make sense to calculate pressure during EM, so Gromacs outputs it as 
zero.  Since there are no velocities, any reported pressure value would be 
meaningless.

-Justin

> Greg
>
> ### md.log file 4.5.5 ###
>
> :-)  /nfs/01/cwr0351/GMX4.5.5/bin/mdrun_d (double precision)  (-:
>
>
> ++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
> B. Hess and C. Kutzner and D. van der Spoel and E. Lindahl
> GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable
> molecular simulation
> J. Chem. Theory Comput. 4 (2008) pp. 435-447
> -------- -------- --- Thank You --- -------- --------
>
>
> ++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
> D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark and H. J. C.
> Berendsen
> GROMACS: Fast, Flexible and Free
> J. Comp. Chem. 26 (2005) pp. 1701-1719
> -------- -------- --- Thank You --- -------- --------
>
>
> ++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
> E. Lindahl and B. Hess and D. van der Spoel
> GROMACS 3.0: A package for molecular simulation and trajectory analysis
> J. Mol. Mod. 7 (2001) pp. 306-317
> -------- -------- --- Thank You --- -------- --------
>
>
> ++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
> H. J. C. Berendsen, D. van der Spoel and R. van Drunen
> GROMACS: A message-passing parallel molecular dynamics implementation
> Comp. Phys. Comm. 91 (1995) pp. 43-56
> -------- -------- --- Thank You --- -------- --------
>
> Input Parameters:
>     integrator           = l-bfgs
>     nsteps               = 100000
>     init_step            = 0
>     ns_type              = Grid
>     nstlist              = 10
>     ndelta               = 2
>     nstcomm              = 100
>     comm_mode            = Linear
>     nstlog               = 1
>     nstxout              = 1
>     nstvout              = 1
>     nstfout              = 1
>     nstcalcenergy        = -1
>     nstenergy            = 1
>     nstxtcout            = 10
>     init_t               = 0
>     delta_t              = 0.003
>     xtcprec              = 1000
>     nkx                  = 0
>     nky                  = 0
>     nkz                  = 0
>     pme_order            = 4
>     ewald_rtol           = 1e-05
>     ewald_geometry       = 0
>     epsilon_surface      = 0
>     optimize_fft         = FALSE
>     ePBC                 = xyz
>     bPeriodicMols        = FALSE
>     bContinuation        = TRUE
>     bShakeSOR            = FALSE
>     etc                  = No
>     nsttcouple           = -1
>     epc                  = No
>     epctype              = Isotropic
>     nstpcouple           = -1
>     tau_p                = 5
>     ref_p (3x3):
>        ref_p[    0]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>        ref_p[    1]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>        ref_p[    2]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>     compress (3x3):
>        compress[    0]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>        compress[    1]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>        compress[    2]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>     refcoord_scaling     = No
>     posres_com (3):
>        posres_com[0]= 0.00000e+00
>        posres_com[1]= 0.00000e+00
>        posres_com[2]= 0.00000e+00
>     posres_comB (3):
>        posres_comB[0]= 0.00000e+00
>        posres_comB[1]= 0.00000e+00
>        posres_comB[2]= 0.00000e+00
>     andersen_seed        = -1
>     rlist                = 1.1
>     rlistlong            = 1.1
>     rtpi                 = 0.05
>     coulombtype          = User
>     rcoulomb_switch      = 0
>     rcoulomb             = 1
>     vdwtype              = User
>     rvdw_switch          = 0
>     rvdw                 = 1
>     epsilon_r            = 1
>     epsilon_rf           = 1
>     tabext               = 1
>     implicit_solvent     = No
>     gb_algorithm         = Still
>     gb_epsilon_solvent   = 80
>     nstgbradii           = 1
>     rgbradii             = 2
>     gb_saltconc          = 0
>     gb_obc_alpha         = 1
>     gb_obc_beta          = 0.8
>     gb_obc_gamma         = 4.85
>     gb_dielectric_offset = 0.009
>     sa_algorithm         = Ace-approximation
>     sa_surface_tension   = 2.05016
>     DispCorr             = No
>     free_energy          = no
>     init_lambda          = 0
>     delta_lambda         = 0
>     n_foreign_lambda     = 0
>     sc_alpha             = 0
>     sc_power             = 0
>     sc_sigma             = 0.3
>     sc_sigma_min         = 0.3
>     nstdhdl              = 10
>     separate_dhdl_file   = yes
>     dhdl_derivatives     = yes
>     dh_hist_size         = 0
>     dh_hist_spacing      = 0.1
>     nwall                = 0
>     wall_type            = 9-3
>     wall_atomtype[0]     = -1
>     wall_atomtype[1]     = -1
>     wall_density[0]      = 0
>     wall_density[1]      = 0
>     wall_ewald_zfac      = 3
>     pull                 = no
>     disre                = No
>     disre_weighting      = Conservative
>     disre_mixed          = FALSE
>     dr_fc                = 1000
>     dr_tau               = 0
>     nstdisreout          = 100
>     orires_fc            = 0
>     orires_tau           = 0
>     nstorireout          = 100
>     dihre-fc             = 1000
>     em_stepsize          = 0.01
>     em_tol               = 1e-10
>     niter                = 20
>     fc_stepsize          = 0
>     nstcgsteep           = 1000000
>     nbfgscorr            = 10
>     ConstAlg             = Lincs
>     shake_tol            = 0.0001
>     lincs_order          = 4
>     lincs_warnangle      = 30
>     lincs_iter           = 1
>     bd_fric              = 0
>     ld_seed              = 1993
>     cos_accel            = 0
>     deform (3x3):
>        deform[    0]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>        deform[    1]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>        deform[    2]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>     userint1             = 0
>     userint2             = 0
>     userint3             = 0
>     userint4             = 0
>     userreal1            = 0
>     userreal2            = 0
>     userreal3            = 0
>     userreal4            = 0
> grpopts:
>     nrdf:       57597
>     ref_t:           0
>     tau_t:           0
> anneal:          No
> ann_npoints:           0
>     acc:	           0           0           0
>     nfreeze:           N           N           N
>     energygrp_flags[  0]: 2 2
>     energygrp_flags[  1]: 2 2
>     efield-x:
>        n = 0
>     efield-xt:
>        n = 0
>     efield-y:
>        n = 0
>     efield-yt:
>        n = 0
>     efield-z:
>        n = 0
>     efield-zt:
>        n = 0
>     bQMMM                = FALSE
>     QMconstraints        = 0
>     QMMMscheme           = 0
>     scalefactor          = 1
> qm_opts:
>     ngQM                 = 0
> Table routines are used for coulomb: TRUE
> Table routines are used for vdw:     TRUE
> Cut-off's:   NS: 1.1   Coulomb: 1   LJ: 1
> System total charge: 0.000
> Read user tables from table_A_A.xvg with 501 data points.
> Tabscale = 50 points/nm
> Read user tables from table_A_B.xvg with 501 data points.
> Tabscale = 50 points/nm
> Read user tables from table_B_B.xvg with 501 data points.
> Tabscale = 50 points/nm
> Read user tables from table_b0.xvg with 2501 data points.
> Tabscale = 500 points/nm
> Read user tables from table_b1.xvg with 2501 data points.
> Tabscale = 500 points/nm
> Read user tables from table_b5.xvg with 2501 data points.
> Tabscale = 500 points/nm
> Read user tables from table_b12.xvg with 2496 data points.
> Tabscale = 500 points/nm
> Read user tables from table_b17.xvg with 2496 data points.
> Tabscale = 500 points/nm
> Read user tables from table_b19.xvg with 2501 data points.
> Tabscale = 500 points/nm
> Read user tables from table_b40.xvg with 2496 data points.
> Tabscale = 500 points/nm
> Read user tables from table_a1.xvg with 901 data points.
> Read user tables from table_a2.xvg with 901 data points.
> Read user tables from table_a3.xvg with 901 data points.
> Read user tables from table_a4.xvg with 181 data points.
> Read user tables from table_a5.xvg with 181 data points.
> Read user tables from table_d6.xvg with 181 data points.
> Read user tables from table_d7.xvg with 181 data points.
> Read user tables from table_d8.xvg with 181 data points.
> Read user tables from table_d9.xvg with 181 data points.
> Configuring nonbonded kernels...
> Configuring standard C nonbonded kernels...
> Testing x86_64 SSE2 support... present.
>
>
> Initiating Low-Memory BFGS Minimizer
> Max number of connections per atom is 14
> Total number of connections is 267000
> Max number of graph edges per atom is 2
> Total number of graph edges is 38300
> Started Low-Memory BFGS Minimizer on node 0 Tue Apr 24 17:03:47 2012
>
> Low-Memory BFGS Minimizer:
>     Tolerance (Fmax)   =  1.00000e-10
>     Number of steps    =       100000
> Grid: 12 x 12 x 12 cells
>             Step           Time         Lambda
>                0        0.00000        0.00000
>
>     Energies (kJ/mol)
>       Tab. Bonds  Tab. Bonds NC    Tab. Angles      Tab. Dih.        LJ (SR)
>      4.13987e+03    3.14441e+04    2.31911e+04    3.37997e+04   -1.62435e+05
>     Coulomb (SR)      Potential Pressure (bar)
>      0.00000e+00   -6.98604e+04    0.00000e+00
>
> Using 10 BFGS correction steps.
>
>     F-max             =  2.17837e-01 on atom 15319
>     F-Norm            =  3.37657e-02
>
>             Step           Time         Lambda
>                0        0.00000        0.00000
>
>     Energies (kJ/mol)
>       Tab. Bonds  Tab. Bonds NC    Tab. Angles      Tab. Dih.        LJ (SR)
>      4.13987e+03    3.14441e+04    2.31911e+04    3.37997e+04   -1.62435e+05
>     Coulomb (SR)      Potential Pressure (bar)
>      0.00000e+00   -6.98604e+04    0.00000e+00
>
> ### md.log for 4.0.7 ###
>
>   :-)  /nfs/01/cwr0351/local_GMX4.0.7_d/bin/mdrun_d_mpi (double precision)  (-:
>
>
> ++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
> B. Hess and C. Kutzner and D. van der Spoel and E. Lindahl
> GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable
> molecular simulation
> J. Chem. Theory Comput. 4 (2008) pp. 435-447
> -------- -------- --- Thank You --- -------- --------
>
>
> ++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
> D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark and H. J. C.
> Berendsen
> GROMACS: Fast, Flexible and Free
> J. Comp. Chem. 26 (2005) pp. 1701-1719
> -------- -------- --- Thank You --- -------- --------
>
>
> ++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
> E. Lindahl and B. Hess and D. van der Spoel
> GROMACS 3.0: A package for molecular simulation and trajectory analysis
> J. Mol. Mod. 7 (2001) pp. 306-317
> -------- -------- --- Thank You --- -------- --------
>
>
> ++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
> H. J. C. Berendsen, D. van der Spoel and R. van Drunen
> GROMACS: A message-passing parallel molecular dynamics implementation
> Comp. Phys. Comm. 91 (1995) pp. 43-56
> -------- -------- --- Thank You --- -------- --------
>
> Input Parameters:
>     integrator           = l-bfgs
>     nsteps               = 100000
>     init_step            = 0
>     ns_type              = Grid
>     nstlist              = 10
>     ndelta               = 2
>     nstcomm              = 100
>     comm_mode            = Linear
>     nstlog               = 1
>     nstxout              = 1
>     nstvout              = 1
>     nstfout              = 1
>     nstenergy            = 1
>     nstxtcout            = 10
>     init_t               = 0
>     delta_t              = 0.003
>     xtcprec              = 1000
>     nkx                  = 0
>     nky                  = 0
>     nkz                  = 0
>     pme_order            = 4
>     ewald_rtol           = 1e-05
>     ewald_geometry       = 0
>     epsilon_surface      = 0
>     optimize_fft         = FALSE
>     ePBC                 = xyz
>     bPeriodicMols        = FALSE
>     bContinuation        = TRUE
>     bShakeSOR            = FALSE
>     etc                  = No
>     epc                  = No
>     epctype              = Isotropic
>     tau_p                = 5
>     ref_p (3x3):
>        ref_p[    0]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>        ref_p[    1]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>        ref_p[    2]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>     compress (3x3):
>        compress[    0]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>        compress[    1]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>        compress[    2]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>     refcoord_scaling     = No
>     posres_com (3):
>        posres_com[0]= 0.00000e+00
>        posres_com[1]= 0.00000e+00
>        posres_com[2]= 0.00000e+00
>     posres_comB (3):
>        posres_comB[0]= 0.00000e+00
>        posres_comB[1]= 0.00000e+00
>        posres_comB[2]= 0.00000e+00
>     andersen_seed        = -1
>     rlist                = 1.1
>     rtpi                 = 0.05
>     coulombtype          = User
>     rcoulomb_switch      = 0
>     rcoulomb             = 1
>     vdwtype              = User
>     rvdw_switch          = 0
>     rvdw                 = 1
>     epsilon_r            = 1
>     epsilon_rf           = 1
>     tabext               = 1
>     implicit_solvent     = No
>     gb_algorithm         = Still
>     gb_epsilon_solvent   = 80
>     nstgbradii           = 1
>     rgbradii             = 2
>     gb_saltconc          = 0
>     gb_obc_alpha         = 1
>     gb_obc_beta          = 0.8
>     gb_obc_gamma         = 4.85
>     sa_surface_tension   = 2.092
>     DispCorr             = No
>     free_energy          = no
>     init_lambda          = 0
>     sc_alpha             = 0
>     sc_power             = 0
>     sc_sigma             = 0.3
>     delta_lambda         = 0
>     nwall                = 0
>     wall_type            = 9-3
>     wall_atomtype[0]     = -1
>     wall_atomtype[1]     = -1
>     wall_density[0]      = 0
>     wall_density[1]      = 0
>     wall_ewald_zfac      = 3
>     pull                 = no
>     disre                = No
>     disre_weighting      = Conservative
>     disre_mixed          = FALSE
>     dr_fc                = 1000
>     dr_tau               = 0
>     nstdisreout          = 100
>     orires_fc            = 0
>     orires_tau           = 0
>     nstorireout          = 100
>     dihre-fc             = 1000
>     em_stepsize          = 0.01
>     em_tol               = 1e-10
>     niter                = 20
>     fc_stepsize          = 0
>     nstcgsteep           = 1000000
>     nbfgscorr            = 10
>     ConstAlg             = Lincs
>     shake_tol            = 0.0001
>     lincs_order          = 4
>     lincs_warnangle      = 30
>     lincs_iter           = 1
>     bd_fric              = 0
>     ld_seed              = 1993
>     cos_accel            = 0
>     deform (3x3):
>        deform[    0]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>        deform[    1]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>        deform[    2]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>     userint1             = 0
>     userint2             = 0
>     userint3             = 0
>     userint4             = 0
>     userreal1            = 0
>     userreal2            = 0
>     userreal3            = 0
>     userreal4            = 0
> grpopts:
>     nrdf:       57597
>     ref_t:           0
>     tau_t:           0
> anneal:          No
> ann_npoints:           0
>     acc:	           0           0           0
>     nfreeze:           N           N           N
>     energygrp_flags[  0]: 2 2
>     energygrp_flags[  1]: 2 2
>     efield-x:
>        n = 0
>     efield-xt:
>        n = 0
>     efield-y:
>        n = 0
>     efield-yt:
>        n = 0
>     efield-z:
>        n = 0
>     efield-zt:
>        n = 0
>     bQMMM                = FALSE
>     QMconstraints        = 0
>     QMMMscheme           = 0
>     scalefactor          = 1
> qm_opts:
>     ngQM                 = 0
> Table routines are used for coulomb: TRUE
> Table routines are used for vdw:     TRUE
> Cut-off's:   NS: 1.1   Coulomb: 0   LJ: 1
> System total charge: 0.000
> Read user tables from table_A_A.xvg with 501 data points.
> Tabscale = 50 points/nm
> Read user tables from table_A_B.xvg with 501 data points.
> Tabscale = 50 points/nm
> Read user tables from table_B_B.xvg with 501 data points.
> Tabscale = 50 points/nm
> Read user tables from table_b0.xvg with 2501 data points.
> Tabscale = 500 points/nm
> Read user tables from table_b1.xvg with 2501 data points.
> Tabscale = 500 points/nm
> Read user tables from table_b5.xvg with 2501 data points.
> Tabscale = 500 points/nm
> Read user tables from table_b12.xvg with 2496 data points.
> Tabscale = 500 points/nm
> Read user tables from table_b17.xvg with 2496 data points.
> Tabscale = 500 points/nm
> Read user tables from table_b19.xvg with 2501 data points.
> Tabscale = 500 points/nm
> Read user tables from table_b40.xvg with 2496 data points.
> Tabscale = 500 points/nm
> Read user tables from table_a1.xvg with 901 data points.
> Read user tables from table_a2.xvg with 901 data points.
> Read user tables from table_a3.xvg with 901 data points.
> Read user tables from table_a4.xvg with 181 data points.
> Read user tables from table_a5.xvg with 181 data points.
> Read user tables from table_d6.xvg with 181 data points.
> Read user tables from table_d7.xvg with 181 data points.
> Read user tables from table_d8.xvg with 181 data points.
> Read user tables from table_d9.xvg with 181 data points.
> Configuring nonbonded kernels...
> Testing x86_64 SSE2 support... present.
>
>
> Initiating Low-Memory BFGS Minimizer
> Max number of connections per atom is 11
> Total number of connections is 209800
> Max number of graph edges per atom is 2
> Total number of graph edges is 38300
> Started Low-Memory BFGS Minimization on node 0 Thu Apr 26 10:10:05 2012
> Low-Memory BFGS Minimizer:
>     Tolerance (Fmax)   =  1.00000e-10
>     Number of steps    =       100000
> Grid: 12 x 12 x 12 cells
>             Step           Time         Lambda
>                0        0.00000        0.00000
>
>     Energies (kJ/mol)
>       Tab. Bonds  Tab. Bonds NC    Tab. Angles      Tab. Dih.        LJ (SR)
>      4.13987e+03    3.14441e+04    2.31911e+04    3.37997e+04   -1.62435e+05
>     Coulomb (SR)      Potential Pressure (bar)
>      0.00000e+00   -6.98604e+04   -5.12822e+02
>
> Using 10 BFGS correction steps.
>
>     F-max             =  2.17837e-01 on atom 15319
>     F-Norm            =  3.37657e-02
>
>             Step           Time         Lambda
>                0        0.00000        0.00000
>
>     Energies (kJ/mol)
>       Tab. Bonds  Tab. Bonds NC    Tab. Angles      Tab. Dih.        LJ (SR)
>      4.13987e+03    3.14441e+04    2.31911e+04    3.37997e+04   -1.62435e+05
>     Coulomb (SR)      Potential Pressure (bar)
>      0.00000e+00   -6.98604e+04   -5.12824e+02
>
>
>
>

-- 
========================================

Justin A. Lemkul
Ph.D. Candidate
ICTAS Doctoral Scholar
MILES-IGERT Trainee
Department of Biochemistry
Virginia Tech
Blacksburg, VA
jalemkul[at]vt.edu | (540) 231-9080
http://www.bevanlab.biochem.vt.edu/Pages/Personal/justin

========================================



More information about the gromacs.org_gmx-users mailing list