[gmx-users] Re: energy conservation / frozen atoms

S. Alireza Bagherzadeh s.a.bagherzadeh.h at gmail.com
Sun Aug 4 22:08:35 CEST 2013


> On 8/2/13 3:19 PM, S. Alireza Bagherzadeh wrote:
> > Thanks for your notes.
> >
> >
> > I did a diagnosis test which could be of relevance here.
> >
> > I set up the following system:
> > [ gas | liquid water (solid water) liquid water | gas ]
> >
> > gas is united atom methane.
> > liquid water is tip4p-ice model and solid water is a cage-like
> crystalline
> > structure of water and methane called gas hydrate.
> >
> > Now, in order to test the effect of freezing and position restraining on
> > the performance of nve I did two tests at 370 K.
> >
> > Test 1 (freezing):
> > Solid water was kept frozen in all 3 dimensions (Y Y Y).
> > First I ran a nvt for 250 ps for equilibration (potential and total
> energy
> > both converged after 250 ps, Pressure equilibrated at ~ 3950 bar). Then I
> > started a 1ns nve.
> > Similar to my other simulation, the total energy linearly decreased
> (0.84%
> > per ns) as well as potential energy. Pressure remained around 3950 bar;
> > however, the temperature decreased from 370 to 364 K (physically, this
> > should not happen).
> >
> >
> > Test 2 (position restraining):
> > Oxygen of solid water was strongly restrained to a point (fc of 100000).
> > Similar to the previous test, first I ran a nvt for 250 ps for
> > equilibration (potential and total energy both converged after 250 ps,
> > Pressure equilibrated at about 0 bar with fluctuations of ~ 2000 bar).
> Then
> > I started a 1ns nve.
> > Again, similar to test 1, the total energy linearly decreased (1.33% per
> > ns) as well as potential energy. Pressure remain around 0 bar; however,
> the
> > temperature initially dropped from 370 K to 355K within 1 ps, then
> > increased to 358 K during the next 50 ps and thereafter kept linearly
> > decreasing to 353 K until the end of 1 ns run (physically and
> intuitively,
> > this should not happen).
> >
> >
> >
> > (In  both of the tests, I kept the methane inside the cages of solid
> water
> > position-restrained to a point by fc = 1000).
> >
> > If needed I can post the .mdp and .top files too.
> >
>
> An .mdp file would be useful, otherwise a demonstration that these
> parameters
> actually produce an energy-conserving NVE ensemble for a simple system.
>
> -Justin
>
> --
>

Here is the .mdp file for freeze test:

;-----------------------------------------------------------------------------------------------------;
;-----------------------------------------------------------------------------------------------------;
; Run control
integrator               = md       ; Leap-frog algorithm
tinit                    = 0        ; starting time [ps]
dt                       = 0.001    ; time step     [ps]
nsteps                   = 1000000   ; number of steps
nstcomm                  = 100      ; frequency for center of mass motion
removal [steps]
;-----------------------------------------------------------------------------------------------------;
;-----------------------------------------------------------------------------------------------------;
; Output control
nstxout                  = 0        ; frequency to write coordinates to
output trajectory file [steps]
nstvout                  = 0        ; frequency to write velocities to
output trajectory file  [steps]
nstfout                  = 0        ; frequency to write forces to output
trajectory file      [steps]
nstlog                   = 500      ; frequency to write energies to log
file [steps]
nstenergy                = 500      ; frequency to write energies to energy
file [steps]
nstxtcout                = 0        ; frequency to write coordinates to xtc
trajectory [steps]
xtc-precision            = 1000     ; precision to write to xtc trajectory
[real]
xtc_grps                 = HYDW HYDG SOL GAS
energygrps               = HYDW HYDG SOL GAS
;-----------------------------------------------------------------------------------------------------;
;-----------------------------------------------------------------------------------------------------;
; Neighborsearching and short-range nonbonded interactions
nstlist                  = 10       ; frequency to update the neighbor list
[steps]
ns_type                  = grid     ; (grid / simple) search for
neighboring list
pbc                      = xyz      ; priodic boundary conditions (xyz / no
/ xy)
rlist                    = 1.7      ; cut-off distance for the short-range
neighbor list [nm]
;-----------------------------------------------------------------------------------------------------;
;-----------------------------------------------------------------------------------------------------;
; Electrostatics
coulombtype              = PME-Switch
rcoulomb_switch          = 1.3      ; where to switch the Coulomb potential
[nm]
rcoulomb                 = 1.5      ; distance for the Coulomb cut-off [nm]
;-----------------------------------------------------------------------------------------------------;
;-----------------------------------------------------------------------------------------------------;
; van der Waals
vdw-type                 = shift    ; (the LJ normal out at rvdw_switch to
reach zero at rvdw)
rvdw-switch              = 1.3      ; where to strat switching the LJ
potential [nm]
rvdw                     = 1.5      ; cut-off distance for vdw potenrial
[nm]
DispCorr                 = EnerPres ; (Apply long range dispersion
corrections for Energy and Pressure)
;-----------------------------------------------------------------------------------------------------;
;-----------------------------------------------------------------------------------------------------;
; EWALD/PME/PPPM parameters
fourierspacing           = 0.12     ; maximum grid spacing for the FFT when
using PPPM or PME [nm]
pme_order                = 6        ; interpolation order for PME
ewald_rtol               = 1e-06    ; relative strength of the
Ewald-shifted direct potential at rcoulomb
epsilon_surface          = 0        ; dipole correction to the Ewald
summation in 3d
optimize_fft             = yes      ; optimal FFT plan for the grid at
startup (yes / no)
;-----------------------------------------------------------------------------------------------------;
;-----------------------------------------------------------------------------------------------------;
; Temperature coupling
tcoupl                   = no
;tcoupl                   = nose-hoover
nh-chain-length          = 1
tc_grps                  = system
tau_t                    = 0.2      ; time constatn for coupling [ps], 1
for each group
ref_t                    = 370      ; refernce temperature [K], 1 for each
group
;-----------------------------------------------------------------------------------------------------;
;-----------------------------------------------------------------------------------------------------;
; Pressure coupling
Pcoupl                   = no
;Pcoupl                   = Parrinello-Rahman
tau_p                    = 0.5      ; time constant for coupling
compressibility          = 4.5e-05
ref_p                    = 40.0      ; reference pressure for coupling [bar]
;-----------------------------------------------------------------------------------------------------;
;-----------------------------------------------------------------------------------------------------;
; Velocity generation
gen_vel                  = no      ; generating velocities according to
maxwell distribution?
gen_temp                 = 370      ; [K]
gen_seed                 = -1       ; initialize random generator based on
the process ID number [integer]
;-----------------------------------------------------------------------------------------------------;
;-----------------------------------------------------------------------------------------------------;
; Bonds
constraints              = none
constraint-algorithm     = shake
continuation             = no      ; DO apply constraints to the start
configuration
shake-tol                = 1e-10
;-----------------------------------------------------------------------------------------------------;
;-----------------------------------------------------------------------------------------------------;
; Non-equilibrium MD
freezegrps               = HYDW
freezedim                = Y Y Y
;-----------------------------------------------------------------------------------------------------;
;-----------------------------------------------------------------------------------------------------;



Here is the .top file for freeze test:

; Topology for methane hydrate between silica surfaces in contact with
water and gas

#include "/home/alireza/gromacs/myff.ff/forcefield.itp"

;Hydrate
;-----------------------------------------------
; water topology - hydrate phase
#include "/home/alireza/gromacs/myff.ff/tip4p-ice_hyd.itp"


; methane topology - hydrate phase
#include "/home/alireza/gromacs/myff.ff/UAmethane_hyd.itp"

[position_restraints]
; ai funct   fc
;   1   1    1000  1000  1000  ; Restrain Carbon to a point


;SOL
;-----------------------------------------------
; water topology - liquid phase
#include "/home/alireza/gromacs/myff.ff/tip4p-ice_sol.itp"

;------------------------------------------------


;GAS
;-----------------------------------------------
; methane topology - gas phase
#include "/home/alireza/gromacs/myff.ff/UAmethane_gas.itp"

;------------------------------------------------



[ system ]
; Name
Methane hydrate in contact with water and gas

[ molecules ]
; Compound             #mols
HydrateW               2322
HydrateG               357
SOL                    8659
MethaneG               133


I am also running an nve in which I unfroze the solid water phase after
equilibration in nvt and it seems that the total energy is very well
conserved.


--
Alireza



More information about the gromacs.org_gmx-users mailing list