[gmx-users] Reg:1 particles communicated to PME node 0 are more than 2/3 times the cut-off

Subramaniam Boopathi boopathiphd at gmail.com
Fri Feb 8 07:48:52 CET 2013


dear sir,
           how can i remove this following problem

Log file opened on Fri Feb  8 12:04:27 2013
Host: alzhimer  pid: 3977  nodeid: 0  nnodes:  1
The Gromacs distribution was built Mon Dec  3 10:09:10 IST 2012 by
root at alzhimer (Linux 2.6.32-279.el6.x86_64 x86_64)


                         :-)  G  R  O  M  A  C  S  (-:

                God Rules Over Mankind, Animals, Cosmos and Such

                            :-)  VERSION 4.5.5  (-:

        Written by Emile Apol, Rossen Apostolov, Herman J.C. Berendsen,
      Aldert van Buuren, Pär Bjelkmar, Rudi van Drunen, Anton Feenstra,
        Gerrit Groenhof, Peter Kasson, Per Larsson, Pieter Meulenhoff,
           Teemu Murtola, Szilard Pall, Sander Pronk, Roland Schulz,
                Michael Shirts, Alfons Sijbers, Peter Tieleman,

               Berk Hess, David van der Spoel, and Erik Lindahl.

       Copyright (c) 1991-2000, University of Groningen, The Netherlands.
            Copyright (c) 2001-2010, The GROMACS development team at
        Uppsala University & The Royal Institute of Technology, Sweden.
            check out http://www.gromacs.org for more information.

         This program is free software; you can redistribute it and/or
          modify it under the terms of the GNU General Public License
         as published by the Free Software Foundation; either version 2
             of the License, or (at your option) any later version.

                     :-)  ./mdrun_d (double precision)  (-:


++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
B. Hess and C. Kutzner and D. van der Spoel and E. Lindahl
GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable
molecular simulation
J. Chem. Theory Comput. 4 (2008) pp. 435-447
-------- -------- --- Thank You --- -------- --------


++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark and H. J. C.
Berendsen
GROMACS: Fast, Flexible and Free
J. Comp. Chem. 26 (2005) pp. 1701-1719
-------- -------- --- Thank You --- -------- --------


++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
E. Lindahl and B. Hess and D. van der Spoel
GROMACS 3.0: A package for molecular simulation and trajectory analysis
J. Mol. Mod. 7 (2001) pp. 306-317
-------- -------- --- Thank You --- -------- --------


++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
H. J. C. Berendsen, D. van der Spoel and R. van Drunen
GROMACS: A message-passing parallel molecular dynamics implementation
Comp. Phys. Comm. 91 (1995) pp. 43-56
-------- -------- --- Thank You --- -------- --------

Input Parameters:
   integrator           = md
   nsteps               = 50000
   init_step            = 0
   ns_type              = Grid
   nstlist              = 10
   ndelta               = 2
   nstcomm              = 10
   comm_mode            = Linear
   nstlog               = 10
   nstxout              = 500
   nstvout              = 5000
   nstfout              = 0
   nstcalcenergy        = 10
   nstenergy            = 50
   nstxtcout            = 500
   init_t               = 0
   delta_t              = 0.002
   xtcprec              = 1000
   nkx                  = 32
   nky                  = 32
   nkz                  = 32
   pme_order            = 4
   ewald_rtol           = 1e-05
   ewald_geometry       = 0
   epsilon_surface      = 0
   optimize_fft         = TRUE
   ePBC                 = xyz
   bPeriodicMols        = FALSE
   bContinuation        = FALSE
   bShakeSOR            = FALSE
   etc                  = V-rescale
   nsttcouple           = 10
   epc                  = No
   epctype              = Isotropic
   nstpcouple           = -1
   tau_p                = 1
   ref_p (3x3):
      ref_p[    0]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
      ref_p[    1]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
      ref_p[    2]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
   compress (3x3):
      compress[    0]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
      compress[    1]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
      compress[    2]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
   refcoord_scaling     = No
   posres_com (3):
      posres_com[0]= 0.00000e+00
      posres_com[1]= 0.00000e+00
      posres_com[2]= 0.00000e+00
   posres_comB (3):
      posres_comB[0]= 0.00000e+00
      posres_comB[1]= 0.00000e+00
      posres_comB[2]= 0.00000e+00
   andersen_seed        = 815131
   rlist                = 1
   rlistlong            = 1
   rtpi                 = 0.05
   coulombtype          = PME
   rcoulomb_switch      = 0
   rcoulomb             = 1
   vdwtype              = Cut-off
   rvdw_switch          = 0
   rvdw                 = 1
   epsilon_r            = 1
   epsilon_rf           = 1
   tabext               = 1
   implicit_solvent     = No
   gb_algorithm         = Still
   gb_epsilon_solvent   = 80
   nstgbradii           = 1
   rgbradii             = 1
   gb_saltconc          = 0
   gb_obc_alpha         = 1
   gb_obc_beta          = 0.8
   gb_obc_gamma         = 4.85
   gb_dielectric_offset = 0.009
   sa_algorithm         = Ace-approximation
   sa_surface_tension   = 2.05016
   DispCorr             = No
   free_energy          = no
   init_lambda          = 0
   delta_lambda         = 0
   n_foreign_lambda     = 0
   sc_alpha             = 0
   sc_power             = 0
   sc_sigma             = 0.3
   sc_sigma_min         = 0.3
   nstdhdl              = 10
   separate_dhdl_file   = yes
   dhdl_derivatives     = yes
   dh_hist_size         = 0
   dh_hist_spacing      = 0.1
   nwall                = 0
   wall_type            = 9-3
   wall_atomtype[0]     = -1
   wall_atomtype[1]     = -1
   wall_density[0]      = 0
   wall_density[1]      = 0
   wall_ewald_zfac      = 3
   pull                 = no
   disre                = No
   disre_weighting      = Conservative
   disre_mixed          = FALSE
   dr_fc                = 1000
   dr_tau               = 0
   nstdisreout          = 100
   orires_fc            = 0
   orires_tau           = 0
   nstorireout          = 100
   dihre-fc             = 1000
   em_stepsize          = 0.01
   em_tol               = 10
   niter                = 20
   fc_stepsize          = 0
   nstcgsteep           = 1000
   nbfgscorr            = 10
   ConstAlg             = Lincs
   shake_tol            = 0.0001
   lincs_order          = 4
   lincs_warnangle      = 30
   lincs_iter           = 1
   bd_fric              = 0
   ld_seed              = 1993
   cos_accel            = 0
   deform (3x3):
      deform[    0]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
      deform[    1]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
      deform[    2]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
   userint1             = 0
   userint2             = 0
   userint3             = 0
   userint4             = 0
   userreal1            = 0
   userreal2            = 0
   userreal3            = 0
   userreal4            = 0
grpopts:
   nrdf:      248.91     8028.09
   ref_t:         300         300
   tau_t:         0.1         0.1
anneal:          No          No
ann_npoints:           0           0
   acc:               0           0           0
   nfreeze:           N           N           N
   energygrp_flags[  0]: 0
   efield-x:
      n = 0
   efield-xt:
      n = 0
   efield-y:
      n = 0
   efield-yt:
      n = 0
   efield-z:
      n = 0
   efield-zt:
      n = 0
   bQMMM                = FALSE
   QMconstraints        = 0
   QMMMscheme           = 0
   scalefactor          = 1
qm_opts:
   ngQM                 = 0

Initializing Domain Decomposition on 12 nodes
Dynamic load balancing: auto
Will sort the charge groups at every domain (re)decomposition
Initial maximum inter charge-group distances:
    two-body bonded interactions: 0.396 nm, LJ-14, atoms 5 13
  multi-body bonded interactions: 0.396 nm, Proper Dih., atoms 5 13
Minimum cell size due to bonded interactions: 0.436 nm
Maximum distance for 5 constraints, at 120 deg. angles, all-trans: 0.763 nm
Estimated maximum distance required for P-LINCS: 0.763 nm
This distance will limit the DD cell size, you can override this with -rcon
Guess for relative PME load: 0.30
Will use 8 particle-particle and 4 PME only nodes
This is a guess, check the performance at the end of the log file
Using 4 separate PME nodes
Scaling the initial minimum size with 1/0.8 (option -dds) = 1.25
Optimizing the DD grid for 8 cells with a minimum initial size of 0.953 nm
The maximum allowed number of cells is: X 3 Y 3 Z 3
Domain decomposition grid 2 x 2 x 2, separate PME nodes 4
PME domain decomposition: 2 x 2 x 1
Interleaving PP and PME nodes
This is a particle-particle only node

Domain decomposition nodeid 0, coordinates 0 0 0

Table routines are used for coulomb: TRUE
Table routines are used for vdw:     FALSE
Will do PME sum in reciprocal space.

++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee and L. G.
Pedersen
A smooth particle mesh Ewald method
J. Chem. Phys. 103 (1995) pp. 8577-8592
-------- -------- --- Thank You --- -------- --------

Will do ordinary reciprocal space Ewald sum.
Using a Gaussian width (1/beta) of 0.320163 nm for Ewald
Cut-off's:   NS: 1   Coulomb: 1   LJ: 1
System total charge: -0.102
Generated table with 4000 data points for Ewald.
Tabscale = 2000 points/nm
Generated table with 4000 data points for LJ6.
Tabscale = 2000 points/nm
Generated table with 4000 data points for LJ12.
Tabscale = 2000 points/nm
Generated table with 4000 data points for 1-4 COUL.
Tabscale = 2000 points/nm
Generated table with 4000 data points for 1-4 LJ6.
Tabscale = 2000 points/nm
Generated table with 4000 data points for 1-4 LJ12.
Tabscale = 2000 points/nm

Enabling SPC-like water optimization for 1330 molecules.

Configuring nonbonded kernels...
Configuring standard C nonbonded kernels...
Testing x86_64 SSE2 support... present.


Removing pbc first time

Initializing Parallel LINear Constraint Solver

++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
B. Hess
P-LINCS: A Parallel Linear Constraint Solver for molecular simulation
J. Chem. Theory Comput. 4 (2008) pp. 116-122
-------- -------- --- Thank You --- -------- --------

The number of constraints is 153
There are inter charge-group constraints,
will communicate selected coordinates each lincs iteration

++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
S. Miyamoto and P. A. Kollman
SETTLE: An Analytical Version of the SHAKE and RATTLE Algorithms for Rigid
Water Models
J. Comp. Chem. 13 (1992) pp. 952-962
-------- -------- --- Thank You --- -------- --------


Linking all bonded interactions to atoms
There are 817 inter charge-group exclusions,
will use an extra communication step for exclusion forces for PME

The initial number of communication pulses is: X 1 Y 1 Z 1
The initial domain decomposition cell size is: X 1.60 nm Y 1.56 nm Z 1.56 nm

The maximum allowed distance for charge groups involved in interactions is:
                 non-bonded interactions           1.000 nm
            two-body bonded interactions  (-rdd)   1.000 nm
          multi-body bonded interactions  (-rdd)   1.000 nm
  atoms separated by up to 5 constraints  (-rcon)  1.562 nm

When dynamic load balancing gets turned on, these settings will change to:
The maximum number of communication pulses is: X 1 Y 1 Z 1
The minimum size for domain decomposition cells is 1.000 nm
The requested allowed shrink of DD cells (option -dds) is: 0.80
The allowed shrink of domain decomposition cells is: X 0.62 Y 0.64 Z 0.64
The maximum allowed distance for charge groups involved in interactions is:
                 non-bonded interactions           1.000 nm
            two-body bonded interactions  (-rdd)   1.000 nm
          multi-body bonded interactions  (-rdd)   1.000 nm
  atoms separated by up to 5 constraints  (-rcon)  1.000 nm


Making 3D domain decomposition grid 2 x 2 x 2, home cell index 0 0 0

Center of mass motion removal mode is Linear
We have the following groups for center of mass motion removal:
  0:  rest

++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
G. Bussi, D. Donadio and M. Parrinello
Canonical sampling through velocity rescaling
J. Chem. Phys. 126 (2007) pp. 014101
-------- -------- --- Thank You --- -------- --------

There are: 4141 Atoms
Charge group distribution at step 0: 176 171 197 177 196 201 171 192
Grid: 6 x 6 x 4 cells

Constraining the starting coordinates (step 0)

Constraining the coordinates at t0-dt (step 0)
RMS relative constraint deviation after constraining: 5.99e-05
Initial temperature: 303.698 K

Started mdrun on node 0 Fri Feb  8 12:04:27 2013

           Step           Time         Lambda
              0        0.00000        0.00000

   Energies (kJ/mol)
          Angle    Proper Dih.  Improper Dih.          LJ-14     Coulomb-14
    2.36059e+03    3.53976e+02    7.34586e+00    7.00084e+03    2.02621e+03
        LJ (SR)   Coulomb (SR)   Coul. recip. Position Rest.      Potential
    7.70414e+03   -5.91044e+04   -6.76092e+03    1.80260e+00   -4.64104e+04
    Kinetic En.   Total Energy  Conserved En.    Temperature Pressure (bar)
    6.48550e+04    1.84446e+04    1.84446e+04    1.88479e+03    7.32453e+03
   Constr. rmsd
    4.81184e-01


-------------------------------------------------------
Program mdrun_d, VERSION 4.5.5
Source code file: pme.c, line: 538

Fatal error:
1 particles communicated to PME node 0 are more than 2/3 times the cut-off
out of the domain decomposition cell of their charge group in dimension y.
This usually means that your system is not well equilibrated.
For more information and tips for troubleshooting, please check the GROMACS
website at http://www.gromacs.org/Documentation/Errors
-------------------------------------------------------

"As Always Your Logic Is Impeccable" (Tuvok)



More information about the gromacs.org_gmx-users mailing list