[gmx-users] cudaStreamSynchronize failed
Cintia C. Vequi-Suplicy
cintia at if.usp.br
Tue May 7 14:08:20 CEST 2013
Hello,
I am running a bilayer simulation with Gromacs4.6.1.
I have just bought the GPU card and I am doing some tests with a DPPC
bilayer simulation.
But I am always getting the same error:
-------------------------------------------------------
Program mdrun, VERSION 4.6.1
Source code file:
/home/cintia/Downloads/gromacs-4.6.1/src/mdlib/nbnxn_cuda/nbnxn_cuda.cu,
line: 565
Fatal error:
cudaStreamSynchronize failed in cu_blockwait_nb: unspecified launch failure
For more information and tips for troubleshooting, please check the GROMACS
website at http://www.gromacs.org/Documentation/Errors
-------------------------------------------------------
I saw that someone posted a similar error here before, but I was not
able to understand the solution for it.
Can anyone help?
Below is the .log file with the details of the hardware and the system.
Thank you in advance,
Cíntia
Log file opened on Mon May 6 21:19:32 2013
Host: titan2 pid: 12346 nodeid: 0 nnodes: 1
Gromacs version: VERSION 4.6.1
Precision: single
Memory model: 64 bit
MPI library: thread_mpi
OpenMP support: enabled
GPU support: enabled
invsqrt routine: gmx_software_invsqrt(x)
CPU acceleration: SSE4.1
FFT library: fftw-3.3.2-sse2
Large file support: enabled
RDTSCP usage: enabled
Built on: Sex Mai 3 16:52:44 BRT 2013
Built by: root at titan2 [CMAKE]
Build OS/arch: Linux 3.8.0-19-generic x86_64
Build CPU vendor: GenuineIntel
Build CPU brand: Intel(R) Core(TM) i7 CPU 870 @ 2.93GHz
Build CPU family: 6 Model: 30 Stepping: 5
Build CPU features: apic clfsh cmov cx8 cx16 htt lahf_lm mmx msr
nonstop_tsc pdcm popcnt pse rdtscp sse2 sse3 sse4.1 sse4.2 ssse3
C compiler: /usr/bin/cc GNU cc (Ubuntu/Linaro 4.7.3-1ubuntu1) 4.7.3
C compiler flags: -msse4.1 -Wextra -Wno-missing-field-initializers
-Wno-sign-compare -Wall -Wno-unused -Wunused-value
-fomit-frame-pointer -funroll-all-loops -fexcess-precision=fast -O3
-DNDEBUG
C++ compiler: /usr/bin/c++ GNU c++ (Ubuntu/Linaro 4.7.3-1ubuntu1)
4.7.3
C++ compiler flags: -msse4.1 -Wextra -Wno-missing-field-initializers
-Wno-sign-compare -Wall -Wno-unused -Wunused-value
-fomit-frame-pointer -funroll-all-loops -fexcess-precision=fast -O3
-DNDEBUG
CUDA compiler: nvcc: NVIDIA (R) Cuda compiler driver;Copyright (c)
2005-2012 NVIDIA Corporation;Built on Fri_Sep_21_17:28:58_PDT_2012;Cuda
compilation tools, release 5.0, V0.2.1221
CUDA driver: 5.50
CUDA runtime: 5.0
:-) G R O M A C S (-:
God Rules Over Mankind, Animals, Cosmos and Such
:-) VERSION 4.6.1 (-:
Contributions from Mark Abraham, Emile Apol, Rossen Apostolov,
Herman J.C. Berendsen, Aldert van Buuren, Pär Bjelkmar,
Rudi van Drunen, Anton Feenstra, Gerrit Groenhof, Christoph Junghans,
Peter Kasson, Carsten Kutzner, Per Larsson, Pieter Meulenhoff,
Teemu Murtola, Szilard Pall, Sander Pronk, Roland Schulz,
Michael Shirts, Alfons Sijbers, Peter Tieleman,
Berk Hess, David van der Spoel, and Erik Lindahl.
Copyright (c) 1991-2000, University of Groningen, The Netherlands.
Copyright (c) 2001-2012,2013, The GROMACS development team at
Uppsala University & The Royal Institute of Technology, Sweden.
check out http://www.gromacs.org for more information.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public License
as published by the Free Software Foundation; either version 2.1
of the License, or (at your option) any later version.
:-) mdrun (-:
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
B. Hess and C. Kutzner and D. van der Spoel and E. Lindahl
GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable
molecular simulation
J. Chem. Theory Comput. 4 (2008) pp. 435-447
-------- -------- --- Thank You --- -------- --------
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark and H. J. C.
Berendsen
GROMACS: Fast, Flexible and Free
J. Comp. Chem. 26 (2005) pp. 1701-1719
-------- -------- --- Thank You --- -------- --------
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
E. Lindahl and B. Hess and D. van der Spoel
GROMACS 3.0: A package for molecular simulation and trajectory analysis
J. Mol. Mod. 7 (2001) pp. 306-317
-------- -------- --- Thank You --- -------- --------
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
H. J. C. Berendsen, D. van der Spoel and R. van Drunen
GROMACS: A message-passing parallel molecular dynamics implementation
Comp. Phys. Comm. 91 (1995) pp. 43-56
-------- -------- --- Thank You --- -------- --------
Input Parameters:
integrator = md
nsteps = 50000000
init-step = 0
cutoff-scheme = Verlet
ns_type = Grid
nstlist = 40
ndelta = 2
nstcomm = 100
comm-mode = Linear
nstlog = 2000
nstxout = 2000
nstvout = 2000
nstfout = 0
nstcalcenergy = 40
nstenergy = 2000
nstxtcout = 2000
init-t = 0
delta-t = 0.002
xtcprec = 2000
fourierspacing = 0.12
nkx = 96
nky = 96
nkz = 120
pme-order = 4
ewald-rtol = 1e-05
ewald-geometry = 0
epsilon-surface = 0
optimize-fft = FALSE
ePBC = xyz
bPeriodicMols = FALSE
bContinuation = FALSE
bShakeSOR = FALSE
etc = V-rescale
bPrintNHChains = FALSE
nsttcouple = 40
epc = Berendsen
epctype = Semiisotropic
nstpcouple = 40
tau-p = 0.5
ref-p (3x3):
ref-p[ 0]={ 1.00000e+00, 0.00000e+00, 0.00000e+00}
ref-p[ 1]={ 0.00000e+00, 1.00000e+00, 0.00000e+00}
ref-p[ 2]={ 0.00000e+00, 0.00000e+00, 1.00000e+00}
compress (3x3):
compress[ 0]={ 4.51000e-05, 0.00000e+00, 0.00000e+00}
compress[ 1]={ 0.00000e+00, 4.51000e-05, 0.00000e+00}
compress[ 2]={ 0.00000e+00, 0.00000e+00, 4.51000e-05}
refcoord-scaling = No
posres-com (3):
posres-com[0]= 0.00000e+00
posres-com[1]= 0.00000e+00
posres-com[2]= 0.00000e+00
posres-comB (3):
posres-comB[0]= 0.00000e+00
posres-comB[1]= 0.00000e+00
posres-comB[2]= 0.00000e+00
verlet-buffer-drift = 0.005
rlist = 1.385
rlistlong = 1.385
nstcalclr = 40
rtpi = 0.05
coulombtype = PME
coulomb-modifier = Potential-shift
rcoulomb-switch = 0
rcoulomb = 1.3
vdwtype = Cut-off
vdw-modifier = Potential-shift
rvdw-switch = 0
rvdw = 1.3
epsilon-r = 1
epsilon-rf = 66
tabext = 1
implicit-solvent = No
gb-algorithm = Still
gb-epsilon-solvent = 80
nstgbradii = 1
rgbradii = 1
gb-saltconc = 0
gb-obc-alpha = 1
gb-obc-beta = 0.8
gb-obc-gamma = 4.85
gb-dielectric-offset = 0.009
sa-algorithm = Ace-approximation
sa-surface-tension = 2.05016
DispCorr = No
bSimTemp = FALSE
free-energy = no
nwall = 0
wall-type = 9-3
wall-atomtype[0] = -1
wall-atomtype[1] = -1
wall-density[0] = 0
wall-density[1] = 0
wall-ewald-zfac = 3
pull = no
rotation = FALSE
disre = No
disre-weighting = Conservative
disre-mixed = FALSE
dr-fc = 1000
dr-tau = 0
nstdisreout = 100
orires-fc = 0
orires-tau = 0
nstorireout = 100
dihre-fc = 0
em-stepsize = 0.01
em-tol = 10
niter = 20
fc-stepsize = 0
nstcgsteep = 1000
nbfgscorr = 10
ConstAlg = Lincs
shake-tol = 0.0001
lincs-order = 4
lincs-warnangle = 30
lincs-iter = 1
bd-fric = 0
ld-seed = 1993
cos-accel = 0
deform (3x3):
deform[ 0]={ 0.00000e+00, 0.00000e+00, 0.00000e+00}
deform[ 1]={ 0.00000e+00, 0.00000e+00, 0.00000e+00}
deform[ 2]={ 0.00000e+00, 0.00000e+00, 0.00000e+00}
adress = FALSE
userint1 = 0
userint2 = 0
userint3 = 0
userint4 = 0
userreal1 = 0
userreal2 = 0
userreal3 = 0
userreal4 = 0
grpopts:
nrdf: 51709 169941
ref-t: 296 296
tau-t: 0.4 0.4
anneal: No No
ann-npoints: 0 0
acc: 0 0 0
nfreeze: N N N
energygrp-flags[ 0]: 0 0
energygrp-flags[ 1]: 0 0
efield-x:
n = 0
efield-xt:
n = 0
efield-y:
n = 0
efield-yt:
n = 0
efield-z:
n = 0
efield-zt:
n = 0
bQMMM = FALSE
QMconstraints = 0
QMMMscheme = 0
scalefactor = 1
qm-opts:
ngQM = 0
Using 1 MPI thread
Using 8 OpenMP threads
Detecting CPU-specific acceleration.
Present hardware specification:
Vendor: GenuineIntel
Brand: Intel(R) Core(TM) i7 CPU 870 @ 2.93GHz
Family: 6 Model: 30 Stepping: 5
Features: apic clfsh cmov cx8 cx16 htt lahf_lm mmx msr nonstop_tsc pdcm
popcnt pse rdtscp sse2 sse3 sse4.1 sse4.2 ssse3
Acceleration most likely to fit this hardware: SSE4.1
Acceleration selected at GROMACS compile time: SSE4.1
1 GPU detected:
#0: NVIDIA GeForce GTX 660 Ti, compute cap.: 3.0, ECC: no, stat:
compatible
1 GPU auto-selected for this run: #0
Will do PME sum in reciprocal space.
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee and L. G.
Pedersen
A smooth particle mesh Ewald method
J. Chem. Phys. 103 (1995) pp. 8577-8592
-------- -------- --- Thank You --- -------- --------
Will do ordinary reciprocal space Ewald sum.
Using a Gaussian width (1/beta) of 0.416211 nm for Ewald
Cut-off's: NS: 1.385 Coulomb: 1.3 LJ: 1.3
System total charge: -0.000
Generated table with 1192 data points for Ewald.
Tabscale = 500 points/nm
Generated table with 1192 data points for LJ6.
Tabscale = 500 points/nm
Generated table with 1192 data points for LJ12.
Tabscale = 500 points/nm
Generated table with 1192 data points for 1-4 COUL.
Tabscale = 500 points/nm
Generated table with 1192 data points for 1-4 LJ6.
Tabscale = 500 points/nm
Generated table with 1192 data points for 1-4 LJ12.
Tabscale = 500 points/nm
Using CUDA 8x8 non-bonded kernels
NOTE: With GPUs, reporting energy group contributions is not supported
Potential shift: LJ r^-12: 0.043 r^-6 0.207, Ewald 1.000e-05
Initialized non-bonded Ewald correction tables, spacing: 8.47e-04 size: 1536
Removing pbc first time
Pinning threads with a logical core stride of 1
Initializing LINear Constraint Solver
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
B. Hess and H. Bekker and H. J. C. Berendsen and J. G. E. M. Fraaije
LINCS: A Linear Constraint Solver for molecular simulations
J. Comp. Chem. 18 (1997) pp. 1463-1472
-------- -------- --- Thank You --- -------- --------
The number of constraints is 25088
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
S. Miyamoto and P. A. Kollman
SETTLE: An Analytical Version of the SHAKE and RATTLE Algorithms for Rigid
Water Models
J. Comp. Chem. 13 (1992) pp. 952-962
-------- -------- --- Thank You --- -------- --------
Center of mass motion removal mode is Linear
We have the following groups for center of mass motion removal:
0: Other
1: SOL
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
G. Bussi, D. Donadio and M. Parrinello
Canonical sampling through velocity rescaling
J. Chem. Phys. 126 (2007) pp. 014101
-------- -------- --- Thank You --- -------- --------
There are: 110572 Atoms
Constraining the starting coordinates (step 0)
Constraining the coordinates at t0-dt (step 0)
RMS relative constraint deviation after constraining: 9.68e-06
Initial temperature: 297.425 K
Started mdrun on node 0 Mon May 6 21:19:33 2013
Step Time Lambda
0 0.00000 0.00000
Energies (kJ/mol)
G96Angle Proper Dih. Improper Dih. LJ-14 Coulomb-14
4.06051e+04 3.40234e+04 1.67362e+03 -1.49709e+04 1.26501e+05
LJ (SR) Coulomb (SR) Coul. recip. Potential Kinetic En.
4.84039e+04 -1.74059e+06 9.01597e+03 -1.49534e+06 2.74174e+05
Total Energy Temperature Pressure (bar) Constr. rmsd
-1.22117e+06 2.97544e+02 -1.51178e+01 5.64838e-06
step 80: timed with pme grid 96 96 120, coulomb cutoff 1.300: 2932.9
M-cycles
step 160: timed with pme grid 80 84 108, coulomb cutoff 1.402: 2333.3
M-cycles
step 240: timed with pme grid 72 72 96, coulomb cutoff 1.561: 2516.6
M-cycles
step 320: timed with pme grid 64 64 80, coulomb cutoff 1.840: 3431.2
M-cycles
step 400: timed with pme grid 96 96 112, coulomb cutoff 1.314: 2684.6
M-cycles
step 480: timed with pme grid 96 96 108, coulomb cutoff 1.363: 2610.2
M-cycles
step 560: timed with pme grid 80 84 108, coulomb cutoff 1.402: 2330.4
M-cycles
step 640: timed with pme grid 80 80 104, coulomb cutoff 1.415: 2149.0
M-cycles
step 720: timed with pme grid 80 80 100, coulomb cutoff 1.472: 2282.5
M-cycles
step 800: timed with pme grid 80 80 96, coulomb cutoff 1.533: 2440.7
M-cycles
step 880: timed with pme grid 64 64 96, coulomb cutoff 1.757: 3136.5
M-cycles
optimal pme grid 80 80 104, coulomb cutoff 1.415
Step Time Lambda
2000 4.00000 0.00000
Energies (kJ/mol)
G96Angle Proper Dih. Improper Dih. LJ-14 Coulomb-14
3.75222e+04 3.41983e+04 1.56252e+03 -1.48124e+04 1.26605e+05
LJ (SR) Coulomb (SR) Coul. recip. Potential Kinetic En.
4.86561e+04 -1.74134e+06 4.80517e+03 -1.50280e+06 2.74079e+05
Total Energy Temperature Pressure (bar) Constr. rmsd
-1.22872e+06 2.97442e+02 1.11946e+02 4.97038e-06
Step Time Lambda
4000 8.00000 0.00000
Energies (kJ/mol)
G96Angle Proper Dih. Improper Dih. LJ-14 Coulomb-14
3.77735e+04 3.40478e+04 1.55007e+03 -1.44974e+04 1.26617e+05
LJ (SR) Coulomb (SR) Coul. recip. Potential Kinetic En.
4.99255e+04 -1.74150e+06 4.64326e+03 -1.50144e+06 2.72655e+05
Total Energy Temperature Pressure (bar) Constr. rmsd
-1.22879e+06 2.95896e+02 1.20289e+01 4.96588e-06
Step Time Lambda
6000 12.00000 0.00000
Energies (kJ/mol)
G96Angle Proper Dih. Improper Dih. LJ-14 Coulomb-14
3.81221e+04 3.39915e+04 1.59676e+03 -1.47521e+04 1.26560e+05
LJ (SR) Coulomb (SR) Coul. recip. Potential Kinetic En.
4.81554e+04 -1.73932e+06 4.75281e+03 -1.50089e+06 2.71166e+05
Total Energy Temperature Pressure (bar) Constr. rmsd
-1.22973e+06 2.94281e+02 3.46273e+01 4.89748e-06
Step Time Lambda
8000 16.00000 0.00000
Energies (kJ/mol)
G96Angle Proper Dih. Improper Dih. LJ-14 Coulomb-14
3.78257e+04 3.35386e+04 1.57203e+03 -1.45192e+04 1.26689e+05
LJ (SR) Coulomb (SR) Coul. recip. Potential Kinetic En.
4.83318e+04 -1.73972e+06 4.61104e+03 -1.50167e+06 2.73747e+05
Total Energy Temperature Pressure (bar) Constr. rmsd
-1.22792e+06 2.97081e+02 9.03051e+01 4.89449e-06
Step Time Lambda
10000 20.00000 0.00000
Energies (kJ/mol)
G96Angle Proper Dih. Improper Dih. LJ-14 Coulomb-14
3.74885e+04 3.37616e+04 1.56529e+03 -1.46381e+04 1.26331e+05
LJ (SR) Coulomb (SR) Coul. recip. Potential Kinetic En.
4.59409e+04 -1.73768e+06 4.63791e+03 -1.50260e+06 2.72735e+05
Total Energy Temperature Pressure (bar) Constr. rmsd
-1.22986e+06 2.95982e+02 -1.14181e+02 4.95959e-06
Step Time Lambda
12000 24.00000 0.00000
Energies (kJ/mol)
G96Angle Proper Dih. Improper Dih. LJ-14 Coulomb-14
3.78367e+04 3.40592e+04 1.55085e+03 -1.47973e+04 1.26719e+05
LJ (SR) Coulomb (SR) Coul. recip. Potential Kinetic En.
4.93389e+04 -1.74059e+06 4.64703e+03 -1.50124e+06 2.72343e+05
Total Energy Temperature Pressure (bar) Constr. rmsd
-1.22890e+06 2.95557e+02 1.33158e+02 4.89296e-06
Step Time Lambda
14000 28.00000 0.00000
Energies (kJ/mol)
G96Angle Proper Dih. Improper Dih. LJ-14 Coulomb-14
3.77797e+04 3.44968e+04 1.63869e+03 -1.47180e+04 1.26373e+05
LJ (SR) Coulomb (SR) Coul. recip. Potential Kinetic En.
4.83450e+04 -1.74028e+06 4.61777e+03 -1.50175e+06 2.72387e+05
Total Energy Temperature Pressure (bar) Constr. rmsd
-1.22936e+06 2.95605e+02 6.12269e+00 4.98597e-06
Step Time Lambda
16000 32.00000 0.00000
Energies (kJ/mol)
G96Angle Proper Dih. Improper Dih. LJ-14 Coulomb-14
3.75292e+04 3.36058e+04 1.67502e+03 -1.43040e+04 1.26396e+05
LJ (SR) Coulomb (SR) Coul. recip. Potential Kinetic En.
5.04003e+04 -1.74248e+06 4.70094e+03 -1.50248e+06 2.72324e+05
Total Energy Temperature Pressure (bar) Constr. rmsd
-1.23015e+06 2.95537e+02 1.64334e+02 4.97314e-06
Step Time Lambda
18000 36.00000 0.00000
Energies (kJ/mol)
G96Angle Proper Dih. Improper Dih. LJ-14 Coulomb-14
3.81658e+04 3.40675e+04 1.57609e+03 -1.45716e+04 1.26521e+05
LJ (SR) Coulomb (SR) Coul. recip. Potential Kinetic En.
5.16244e+04 -1.74247e+06 4.68621e+03 -1.50040e+06 2.71938e+05
Total Energy Temperature Pressure (bar) Constr. rmsd
-1.22846e+06 2.95118e+02 1.24742e+02 4.97458e-06
Step Time Lambda
20000 40.00000 0.00000
Energies (kJ/mol)
G96Angle Proper Dih. Improper Dih. LJ-14 Coulomb-14
3.79139e+04 3.35854e+04 1.53764e+03 -1.45186e+04 1.26644e+05
LJ (SR) Coulomb (SR) Coul. recip. Potential Kinetic En.
4.93214e+04 -1.74182e+06 4.73934e+03 -1.50259e+06 2.73360e+05
Total Energy Temperature Pressure (bar) Constr. rmsd
-1.22923e+06 2.96661e+02 5.05927e+01 4.86786e-06
Step Time Lambda
22000 44.00000 0.00000
Energies (kJ/mol)
G96Angle Proper Dih. Improper Dih. LJ-14 Coulomb-14
3.76891e+04 3.47562e+04 1.65573e+03 -1.45616e+04 1.26527e+05
LJ (SR) Coulomb (SR) Coul. recip. Potential Kinetic En.
4.92753e+04 -1.74023e+06 4.73983e+03 -1.50014e+06 2.72006e+05
Total Energy Temperature Pressure (bar) Constr. rmsd
-1.22814e+06 2.95191e+02 -6.57924e+00 4.96477e-06
Step Time Lambda
24000 48.00000 0.00000
Energies (kJ/mol)
G96Angle Proper Dih. Improper Dih. LJ-14 Coulomb-14
3.76193e+04 3.44905e+04 1.55150e+03 -1.46070e+04 1.26559e+05
LJ (SR) Coulomb (SR) Coul. recip. Potential Kinetic En.
4.90591e+04 -1.73865e+06 4.68991e+03 -1.49929e+06 2.72635e+05
Total Energy Temperature Pressure (bar) Constr. rmsd
-1.22666e+06 2.95874e+02 -1.64041e+01 4.93705e-06
Step Time Lambda
26000 52.00000 0.00000
Energies (kJ/mol)
G96Angle Proper Dih. Improper Dih. LJ-14 Coulomb-14
3.79457e+04 3.39780e+04 1.60300e+03 -1.44765e+04 1.26544e+05
LJ (SR) Coulomb (SR) Coul. recip. Potential Kinetic En.
4.76575e+04 -1.74067e+06 4.61449e+03 -1.50280e+06 2.73512e+05
Total Energy Temperature Pressure (bar) Constr. rmsd
-1.22929e+06 2.96826e+02 -1.92726e+01 4.97294e-06
Step Time Lambda
28000 56.00000 0.00000
Energies (kJ/mol)
G96Angle Proper Dih. Improper Dih. LJ-14 Coulomb-14
3.79846e+04 3.43774e+04 1.55924e+03 -1.44129e+04 1.26602e+05
LJ (SR) Coulomb (SR) Coul. recip. Potential Kinetic En.
4.98360e+04 -1.74239e+06 4.60775e+03 -1.50183e+06 2.73156e+05
Total Energy Temperature Pressure (bar) Constr. rmsd
-1.22868e+06 2.96440e+02 1.20466e+02 4.83686e-06
Step Time Lambda
30000 60.00000 0.00000
Energies (kJ/mol)
G96Angle Proper Dih. Improper Dih. LJ-14 Coulomb-14
3.79217e+04 3.40808e+04 1.66489e+03 -1.46594e+04 1.26586e+05
LJ (SR) Coulomb (SR) Coul. recip. Potential Kinetic En.
4.83414e+04 -1.73951e+06 4.58175e+03 -1.50099e+06 2.73058e+05
Total Energy Temperature Pressure (bar) Constr. rmsd
-1.22794e+06 2.96333e+02 -7.79706e+01 4.93017e-06
Step Time Lambda
32000 64.00000 0.00000
Energies (kJ/mol)
G96Angle Proper Dih. Improper Dih. LJ-14 Coulomb-14
3.81304e+04 3.40636e+04 1.62792e+03 -1.46462e+04 1.26630e+05
LJ (SR) Coulomb (SR) Coul. recip. Potential Kinetic En.
4.84920e+04 -1.74024e+06 4.61553e+03 -1.50133e+06 2.73041e+05
Total Energy Temperature Pressure (bar) Constr. rmsd
-1.22829e+06 2.96315e+02 -4.93505e+01 5.00846e-06
Step Time Lambda
34000 68.00000 0.00000
Energies (kJ/mol)
G96Angle Proper Dih. Improper Dih. LJ-14 Coulomb-14
3.83906e+04 3.35932e+04 1.54746e+03 -1.46102e+04 1.26587e+05
LJ (SR) Coulomb (SR) Coul. recip. Potential Kinetic En.
4.65123e+04 -1.73669e+06 4.66940e+03 -1.50000e+06 2.72370e+05
Total Energy Temperature Pressure (bar) Constr. rmsd
-1.22763e+06 2.95587e+02 3.49948e+01 4.84548e-06
Step Time Lambda
36000 72.00000 0.00000
Energies (kJ/mol)
G96Angle Proper Dih. Improper Dih. LJ-14 Coulomb-14
3.79808e+04 3.39248e+04 1.65090e+03 -1.45744e+04 1.26665e+05
LJ (SR) Coulomb (SR) Coul. recip. Potential Kinetic En.
4.81267e+04 -1.73795e+06 4.67039e+03 -1.49951e+06 2.71574e+05
Total Energy Temperature Pressure (bar) Constr. rmsd
-1.22793e+06 2.94723e+02 -2.77373e+00 5.00708e-06
Step Time Lambda
38000 76.00000 0.00000
Energies (kJ/mol)
G96Angle Proper Dih. Improper Dih. LJ-14 Coulomb-14
3.76108e+04 3.39492e+04 1.61483e+03 -1.46447e+04 1.26405e+05
LJ (SR) Coulomb (SR) Coul. recip. Potential Kinetic En.
4.86239e+04 -1.74192e+06 4.64354e+03 -1.50372e+06 2.72468e+05
Total Energy Temperature Pressure (bar) Constr. rmsd
-1.23125e+06 2.95694e+02 -3.46091e+01 4.83479e-06
Step Time Lambda
40000 80.00000 0.00000
Energies (kJ/mol)
G96Angle Proper Dih. Improper Dih. LJ-14 Coulomb-14
3.75317e+04 3.42019e+04 1.62794e+03 -1.45424e+04 1.26466e+05
LJ (SR) Coulomb (SR) Coul. recip. Potential Kinetic En.
4.96389e+04 -1.74253e+06 4.68602e+03 -1.50292e+06 2.72934e+05
Total Energy Temperature Pressure (bar) Constr. rmsd
-1.22999e+06 2.96198e+02 3.22313e+01 5.02197e-06
Step Time Lambda
42000 84.00000 0.00000
Energies (kJ/mol)
G96Angle Proper Dih. Improper Dih. LJ-14 Coulomb-14
3.80765e+04 3.42050e+04 1.52647e+03 -1.45472e+04 1.26425e+05
LJ (SR) Coulomb (SR) Coul. recip. Potential Kinetic En.
4.95822e+04 -1.74110e+06 4.69777e+03 -1.50113e+06 2.72607e+05
Total Energy Temperature Pressure (bar) Constr. rmsd
-1.22852e+06 2.95843e+02 -1.13640e+01 4.92608e-06
Step Time Lambda
44000 88.00000 0.00000
Energies (kJ/mol)
G96Angle Proper Dih. Improper Dih. LJ-14 Coulomb-14
3.78492e+04 3.40960e+04 1.63704e+03 -1.45698e+04 1.26346e+05
LJ (SR) Coulomb (SR) Coul. recip. Potential Kinetic En.
4.75518e+04 -1.73985e+06 4.59341e+03 -1.50234e+06 2.72002e+05
Total Energy Temperature Pressure (bar) Constr. rmsd
-1.23034e+06 2.95187e+02 -8.41246e+01 5.03544e-06
Step Time Lambda
46000 92.00000 0.00000
Energies (kJ/mol)
G96Angle Proper Dih. Improper Dih. LJ-14 Coulomb-14
3.77658e+04 3.42858e+04 1.67298e+03 -1.47786e+04 1.26686e+05
LJ (SR) Coulomb (SR) Coul. recip. Potential Kinetic En.
4.93716e+04 -1.74306e+06 4.61603e+03 -1.50344e+06 2.74380e+05
Total Energy Temperature Pressure (bar) Constr. rmsd
-1.22906e+06 2.97768e+02 -2.28804e+01 4.95687e-06
Step Time Lambda
48000 96.00000 0.00000
Energies (kJ/mol)
G96Angle Proper Dih. Improper Dih. LJ-14 Coulomb-14
3.82197e+04 3.34201e+04 1.57555e+03 -1.46122e+04 1.26530e+05
LJ (SR) Coulomb (SR) Coul. recip. Potential Kinetic En.
4.77465e+04 -1.73781e+06 4.69134e+03 -1.50024e+06 2.72870e+05
Total Energy Temperature Pressure (bar) Constr. rmsd
-1.22737e+06 2.96129e+02 2.47163e+01 4.86327e-06
Writing checkpoint, step 48640 at Mon May 6 21:34:34 2013
Step Time Lambda
50000 100.00000 0.00000
-------------------------------------------------------
Program mdrun, VERSION 4.6.1
Source code file:
/home/cintia/Downloads/gromacs-4.6.1/src/mdlib/nbnxn_cuda/nbnxn_cuda.cu,
line: 565
Fatal error:
cudaStreamSynchronize failed in cu_blockwait_nb: unspecified launch failure
For more information and tips for troubleshooting, please check the GROMACS
website at http://www.gromacs.org/Documentation/Errors
-------------------------------------------------------
"O My God, They Killed Kenny !" (South Park)
More information about the gromacs.org_gmx-users
mailing list