[gmx-users] cudaStreamSynchronize failed

Cintia C. Vequi-Suplicy cintia at if.usp.br
Tue May 7 14:08:20 CEST 2013


Hello,

I am running a bilayer simulation with Gromacs4.6.1.
I have just bought the GPU card and I am doing some tests with a DPPC 
bilayer simulation.

But I am always getting the same error:
-------------------------------------------------------
Program mdrun, VERSION 4.6.1
Source code file: 
/home/cintia/Downloads/gromacs-4.6.1/src/mdlib/nbnxn_cuda/nbnxn_cuda.cu, 
line: 565

Fatal error:
cudaStreamSynchronize failed in cu_blockwait_nb: unspecified launch failure

For more information and tips for troubleshooting, please check the GROMACS
website at http://www.gromacs.org/Documentation/Errors
-------------------------------------------------------

I saw that someone posted a similar error here before, but I was not 
able to understand the solution for it.
Can anyone help?

Below is the .log file with the details of the hardware and the system.

Thank you in advance,
Cíntia


Log file opened on Mon May  6 21:19:32 2013
Host: titan2  pid: 12346  nodeid: 0  nnodes:  1
Gromacs version:    VERSION 4.6.1
Precision:          single
Memory model:       64 bit
MPI library:        thread_mpi
OpenMP support:     enabled
GPU support:        enabled
invsqrt routine:    gmx_software_invsqrt(x)
CPU acceleration:   SSE4.1
FFT library:        fftw-3.3.2-sse2
Large file support: enabled
RDTSCP usage:       enabled
Built on:           Sex Mai  3 16:52:44 BRT 2013
Built by:           root at titan2 [CMAKE]
Build OS/arch:      Linux 3.8.0-19-generic x86_64
Build CPU vendor:   GenuineIntel
Build CPU brand:    Intel(R) Core(TM) i7 CPU         870  @ 2.93GHz
Build CPU family:   6   Model: 30   Stepping: 5
Build CPU features: apic clfsh cmov cx8 cx16 htt lahf_lm mmx msr 
nonstop_tsc pdcm popcnt pse rdtscp sse2 sse3 sse4.1 sse4.2 ssse3
C compiler:         /usr/bin/cc GNU cc (Ubuntu/Linaro 4.7.3-1ubuntu1) 4.7.3
C compiler flags:   -msse4.1   -Wextra -Wno-missing-field-initializers 
-Wno-sign-compare -Wall -Wno-unused -Wunused-value   
-fomit-frame-pointer -funroll-all-loops -fexcess-precision=fast  -O3 
-DNDEBUG
C++ compiler:       /usr/bin/c++ GNU c++ (Ubuntu/Linaro 4.7.3-1ubuntu1) 
4.7.3
C++ compiler flags: -msse4.1   -Wextra -Wno-missing-field-initializers 
-Wno-sign-compare -Wall -Wno-unused -Wunused-value   
-fomit-frame-pointer -funroll-all-loops -fexcess-precision=fast  -O3 
-DNDEBUG
CUDA compiler:      nvcc: NVIDIA (R) Cuda compiler driver;Copyright (c) 
2005-2012 NVIDIA Corporation;Built on Fri_Sep_21_17:28:58_PDT_2012;Cuda 
compilation tools, release 5.0, V0.2.1221
CUDA driver:        5.50
CUDA runtime:       5.0


                          :-)  G  R  O  M  A  C  S  (-:

                 God Rules Over Mankind, Animals, Cosmos and Such

                             :-)  VERSION 4.6.1  (-:

         Contributions from Mark Abraham, Emile Apol, Rossen Apostolov,
            Herman J.C. Berendsen, Aldert van Buuren, Pär Bjelkmar,
      Rudi van Drunen, Anton Feenstra, Gerrit Groenhof, Christoph Junghans,
         Peter Kasson, Carsten Kutzner, Per Larsson, Pieter Meulenhoff,
            Teemu Murtola, Szilard Pall, Sander Pronk, Roland Schulz,
                 Michael Shirts, Alfons Sijbers, Peter Tieleman,

                Berk Hess, David van der Spoel, and Erik Lindahl.

        Copyright (c) 1991-2000, University of Groningen, The Netherlands.
          Copyright (c) 2001-2012,2013, The GROMACS development team at
         Uppsala University & The Royal Institute of Technology, Sweden.
             check out http://www.gromacs.org for more information.

          This program is free software; you can redistribute it and/or
        modify it under the terms of the GNU Lesser General Public License
         as published by the Free Software Foundation; either version 2.1
              of the License, or (at your option) any later version.

                                 :-)  mdrun  (-:


++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
B. Hess and C. Kutzner and D. van der Spoel and E. Lindahl
GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable
molecular simulation
J. Chem. Theory Comput. 4 (2008) pp. 435-447
-------- -------- --- Thank You --- -------- --------


++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark and H. J. C.
Berendsen
GROMACS: Fast, Flexible and Free
J. Comp. Chem. 26 (2005) pp. 1701-1719
-------- -------- --- Thank You --- -------- --------


++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
E. Lindahl and B. Hess and D. van der Spoel
GROMACS 3.0: A package for molecular simulation and trajectory analysis
J. Mol. Mod. 7 (2001) pp. 306-317
-------- -------- --- Thank You --- -------- --------


++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
H. J. C. Berendsen, D. van der Spoel and R. van Drunen
GROMACS: A message-passing parallel molecular dynamics implementation
Comp. Phys. Comm. 91 (1995) pp. 43-56
-------- -------- --- Thank You --- -------- --------

Input Parameters:
    integrator           = md
    nsteps               = 50000000
    init-step            = 0
    cutoff-scheme        = Verlet
    ns_type              = Grid
    nstlist              = 40
    ndelta               = 2
    nstcomm              = 100
    comm-mode            = Linear
    nstlog               = 2000
    nstxout              = 2000
    nstvout              = 2000
    nstfout              = 0
    nstcalcenergy        = 40
    nstenergy            = 2000
    nstxtcout            = 2000
    init-t               = 0
    delta-t              = 0.002
    xtcprec              = 2000
    fourierspacing       = 0.12
    nkx                  = 96
    nky                  = 96
    nkz                  = 120
    pme-order            = 4
    ewald-rtol           = 1e-05
    ewald-geometry       = 0
    epsilon-surface      = 0
    optimize-fft         = FALSE
    ePBC                 = xyz
    bPeriodicMols        = FALSE
    bContinuation        = FALSE
    bShakeSOR            = FALSE
    etc                  = V-rescale
    bPrintNHChains       = FALSE
    nsttcouple           = 40
    epc                  = Berendsen
    epctype              = Semiisotropic
    nstpcouple           = 40
    tau-p                = 0.5
    ref-p (3x3):
       ref-p[    0]={ 1.00000e+00,  0.00000e+00,  0.00000e+00}
       ref-p[    1]={ 0.00000e+00,  1.00000e+00,  0.00000e+00}
       ref-p[    2]={ 0.00000e+00,  0.00000e+00,  1.00000e+00}
    compress (3x3):
       compress[    0]={ 4.51000e-05,  0.00000e+00,  0.00000e+00}
       compress[    1]={ 0.00000e+00,  4.51000e-05,  0.00000e+00}
       compress[    2]={ 0.00000e+00,  0.00000e+00,  4.51000e-05}
    refcoord-scaling     = No
    posres-com (3):
       posres-com[0]= 0.00000e+00
       posres-com[1]= 0.00000e+00
       posres-com[2]= 0.00000e+00
    posres-comB (3):
       posres-comB[0]= 0.00000e+00
       posres-comB[1]= 0.00000e+00
       posres-comB[2]= 0.00000e+00
    verlet-buffer-drift  = 0.005
    rlist                = 1.385
    rlistlong            = 1.385
    nstcalclr            = 40
    rtpi                 = 0.05
    coulombtype          = PME
    coulomb-modifier     = Potential-shift
    rcoulomb-switch      = 0
    rcoulomb             = 1.3
    vdwtype              = Cut-off
    vdw-modifier         = Potential-shift
    rvdw-switch          = 0
    rvdw                 = 1.3
    epsilon-r            = 1
    epsilon-rf           = 66
    tabext               = 1
    implicit-solvent     = No
    gb-algorithm         = Still
    gb-epsilon-solvent   = 80
    nstgbradii           = 1
    rgbradii             = 1
    gb-saltconc          = 0
    gb-obc-alpha         = 1
    gb-obc-beta          = 0.8
    gb-obc-gamma         = 4.85
    gb-dielectric-offset = 0.009
    sa-algorithm         = Ace-approximation
    sa-surface-tension   = 2.05016
    DispCorr             = No
    bSimTemp             = FALSE
    free-energy          = no
    nwall                = 0
    wall-type            = 9-3
    wall-atomtype[0]     = -1
    wall-atomtype[1]     = -1
    wall-density[0]      = 0
    wall-density[1]      = 0
    wall-ewald-zfac      = 3
    pull                 = no
    rotation             = FALSE
    disre                = No
    disre-weighting      = Conservative
    disre-mixed          = FALSE
    dr-fc                = 1000
    dr-tau               = 0
    nstdisreout          = 100
    orires-fc            = 0
    orires-tau           = 0
    nstorireout          = 100
    dihre-fc             = 0
    em-stepsize          = 0.01
    em-tol               = 10
    niter                = 20
    fc-stepsize          = 0
    nstcgsteep           = 1000
    nbfgscorr            = 10
    ConstAlg             = Lincs
    shake-tol            = 0.0001
    lincs-order          = 4
    lincs-warnangle      = 30
    lincs-iter           = 1
    bd-fric              = 0
    ld-seed              = 1993
    cos-accel            = 0
    deform (3x3):
       deform[    0]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
       deform[    1]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
       deform[    2]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
    adress               = FALSE
    userint1             = 0
    userint2             = 0
    userint3             = 0
    userint4             = 0
    userreal1            = 0
    userreal2            = 0
    userreal3            = 0
    userreal4            = 0
grpopts:
    nrdf:       51709      169941
    ref-t:         296         296
    tau-t:         0.4         0.4
anneal:          No          No
ann-npoints:           0           0
    acc:               0           0           0
    nfreeze:           N           N           N
    energygrp-flags[  0]: 0 0
    energygrp-flags[  1]: 0 0
    efield-x:
       n = 0
    efield-xt:
       n = 0
    efield-y:
       n = 0
    efield-yt:
       n = 0
    efield-z:
       n = 0
    efield-zt:
       n = 0
    bQMMM                = FALSE
    QMconstraints        = 0
    QMMMscheme           = 0
    scalefactor          = 1
qm-opts:
    ngQM                 = 0
Using 1 MPI thread
Using 8 OpenMP threads

Detecting CPU-specific acceleration.
Present hardware specification:
Vendor: GenuineIntel
Brand:  Intel(R) Core(TM) i7 CPU         870  @ 2.93GHz
Family:  6  Model: 30  Stepping:  5
Features: apic clfsh cmov cx8 cx16 htt lahf_lm mmx msr nonstop_tsc pdcm 
popcnt pse rdtscp sse2 sse3 sse4.1 sse4.2 ssse3
Acceleration most likely to fit this hardware: SSE4.1
Acceleration selected at GROMACS compile time: SSE4.1


1 GPU detected:
   #0: NVIDIA GeForce GTX 660 Ti, compute cap.: 3.0, ECC:  no, stat: 
compatible

1 GPU auto-selected for this run: #0

Will do PME sum in reciprocal space.

++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee and L. G. 
Pedersen
A smooth particle mesh Ewald method
J. Chem. Phys. 103 (1995) pp. 8577-8592
-------- -------- --- Thank You --- -------- --------

Will do ordinary reciprocal space Ewald sum.
Using a Gaussian width (1/beta) of 0.416211 nm for Ewald
Cut-off's:   NS: 1.385   Coulomb: 1.3   LJ: 1.3
System total charge: -0.000
Generated table with 1192 data points for Ewald.
Tabscale = 500 points/nm
Generated table with 1192 data points for LJ6.
Tabscale = 500 points/nm
Generated table with 1192 data points for LJ12.
Tabscale = 500 points/nm
Generated table with 1192 data points for 1-4 COUL.
Tabscale = 500 points/nm
Generated table with 1192 data points for 1-4 LJ6.
Tabscale = 500 points/nm
Generated table with 1192 data points for 1-4 LJ12.
Tabscale = 500 points/nm

Using CUDA 8x8 non-bonded kernels


NOTE: With GPUs, reporting energy group contributions is not supported

Potential shift: LJ r^-12: 0.043 r^-6 0.207, Ewald 1.000e-05
Initialized non-bonded Ewald correction tables, spacing: 8.47e-04 size: 1536

Removing pbc first time
Pinning threads with a logical core stride of 1

Initializing LINear Constraint Solver

++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
B. Hess and H. Bekker and H. J. C. Berendsen and J. G. E. M. Fraaije
LINCS: A Linear Constraint Solver for molecular simulations
J. Comp. Chem. 18 (1997) pp. 1463-1472
-------- -------- --- Thank You --- -------- --------

The number of constraints is 25088

++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
S. Miyamoto and P. A. Kollman
SETTLE: An Analytical Version of the SHAKE and RATTLE Algorithms for Rigid
Water Models
J. Comp. Chem. 13 (1992) pp. 952-962
-------- -------- --- Thank You --- -------- --------

Center of mass motion removal mode is Linear
We have the following groups for center of mass motion removal:
   0:  Other
   1:  SOL

++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
G. Bussi, D. Donadio and M. Parrinello
Canonical sampling through velocity rescaling
J. Chem. Phys. 126 (2007) pp. 014101
-------- -------- --- Thank You --- -------- --------

There are: 110572 Atoms

Constraining the starting coordinates (step 0)

Constraining the coordinates at t0-dt (step 0)
RMS relative constraint deviation after constraining: 9.68e-06
Initial temperature: 297.425 K

Started mdrun on node 0 Mon May  6 21:19:33 2013

            Step           Time         Lambda
               0        0.00000        0.00000

    Energies (kJ/mol)
        G96Angle    Proper Dih.  Improper Dih.          LJ-14 Coulomb-14
     4.06051e+04    3.40234e+04    1.67362e+03   -1.49709e+04 1.26501e+05
         LJ (SR)   Coulomb (SR)   Coul. recip.      Potential Kinetic En.
     4.84039e+04   -1.74059e+06    9.01597e+03   -1.49534e+06 2.74174e+05
    Total Energy    Temperature Pressure (bar)   Constr. rmsd
    -1.22117e+06    2.97544e+02   -1.51178e+01    5.64838e-06

step   80: timed with pme grid 96 96 120, coulomb cutoff 1.300: 2932.9 
M-cycles
step  160: timed with pme grid 80 84 108, coulomb cutoff 1.402: 2333.3 
M-cycles
step  240: timed with pme grid 72 72 96, coulomb cutoff 1.561: 2516.6 
M-cycles
step  320: timed with pme grid 64 64 80, coulomb cutoff 1.840: 3431.2 
M-cycles
step  400: timed with pme grid 96 96 112, coulomb cutoff 1.314: 2684.6 
M-cycles
step  480: timed with pme grid 96 96 108, coulomb cutoff 1.363: 2610.2 
M-cycles
step  560: timed with pme grid 80 84 108, coulomb cutoff 1.402: 2330.4 
M-cycles
step  640: timed with pme grid 80 80 104, coulomb cutoff 1.415: 2149.0 
M-cycles
step  720: timed with pme grid 80 80 100, coulomb cutoff 1.472: 2282.5 
M-cycles
step  800: timed with pme grid 80 80 96, coulomb cutoff 1.533: 2440.7 
M-cycles
step  880: timed with pme grid 64 64 96, coulomb cutoff 1.757: 3136.5 
M-cycles
               optimal pme grid 80 80 104, coulomb cutoff 1.415
            Step           Time         Lambda
            2000        4.00000        0.00000

    Energies (kJ/mol)
        G96Angle    Proper Dih.  Improper Dih.          LJ-14 Coulomb-14
     3.75222e+04    3.41983e+04    1.56252e+03   -1.48124e+04 1.26605e+05
         LJ (SR)   Coulomb (SR)   Coul. recip.      Potential Kinetic En.
     4.86561e+04   -1.74134e+06    4.80517e+03   -1.50280e+06 2.74079e+05
    Total Energy    Temperature Pressure (bar)   Constr. rmsd
    -1.22872e+06    2.97442e+02    1.11946e+02    4.97038e-06

            Step           Time         Lambda
            4000        8.00000        0.00000

    Energies (kJ/mol)
        G96Angle    Proper Dih.  Improper Dih.          LJ-14 Coulomb-14
     3.77735e+04    3.40478e+04    1.55007e+03   -1.44974e+04 1.26617e+05
         LJ (SR)   Coulomb (SR)   Coul. recip.      Potential Kinetic En.
     4.99255e+04   -1.74150e+06    4.64326e+03   -1.50144e+06 2.72655e+05
    Total Energy    Temperature Pressure (bar)   Constr. rmsd
    -1.22879e+06    2.95896e+02    1.20289e+01    4.96588e-06

            Step           Time         Lambda
            6000       12.00000        0.00000

    Energies (kJ/mol)
        G96Angle    Proper Dih.  Improper Dih.          LJ-14 Coulomb-14
     3.81221e+04    3.39915e+04    1.59676e+03   -1.47521e+04 1.26560e+05
         LJ (SR)   Coulomb (SR)   Coul. recip.      Potential Kinetic En.
     4.81554e+04   -1.73932e+06    4.75281e+03   -1.50089e+06 2.71166e+05
    Total Energy    Temperature Pressure (bar)   Constr. rmsd
    -1.22973e+06    2.94281e+02    3.46273e+01    4.89748e-06

            Step           Time         Lambda
            8000       16.00000        0.00000

    Energies (kJ/mol)
        G96Angle    Proper Dih.  Improper Dih.          LJ-14 Coulomb-14
     3.78257e+04    3.35386e+04    1.57203e+03   -1.45192e+04 1.26689e+05
         LJ (SR)   Coulomb (SR)   Coul. recip.      Potential Kinetic En.
     4.83318e+04   -1.73972e+06    4.61104e+03   -1.50167e+06 2.73747e+05
    Total Energy    Temperature Pressure (bar)   Constr. rmsd
    -1.22792e+06    2.97081e+02    9.03051e+01    4.89449e-06

            Step           Time         Lambda
           10000       20.00000        0.00000

    Energies (kJ/mol)
        G96Angle    Proper Dih.  Improper Dih.          LJ-14 Coulomb-14
     3.74885e+04    3.37616e+04    1.56529e+03   -1.46381e+04 1.26331e+05
         LJ (SR)   Coulomb (SR)   Coul. recip.      Potential Kinetic En.
     4.59409e+04   -1.73768e+06    4.63791e+03   -1.50260e+06 2.72735e+05
    Total Energy    Temperature Pressure (bar)   Constr. rmsd
    -1.22986e+06    2.95982e+02   -1.14181e+02    4.95959e-06

            Step           Time         Lambda
           12000       24.00000        0.00000

    Energies (kJ/mol)
        G96Angle    Proper Dih.  Improper Dih.          LJ-14 Coulomb-14
     3.78367e+04    3.40592e+04    1.55085e+03   -1.47973e+04 1.26719e+05
         LJ (SR)   Coulomb (SR)   Coul. recip.      Potential Kinetic En.
     4.93389e+04   -1.74059e+06    4.64703e+03   -1.50124e+06 2.72343e+05
    Total Energy    Temperature Pressure (bar)   Constr. rmsd
    -1.22890e+06    2.95557e+02    1.33158e+02    4.89296e-06

            Step           Time         Lambda
           14000       28.00000        0.00000

    Energies (kJ/mol)
        G96Angle    Proper Dih.  Improper Dih.          LJ-14 Coulomb-14
     3.77797e+04    3.44968e+04    1.63869e+03   -1.47180e+04 1.26373e+05
         LJ (SR)   Coulomb (SR)   Coul. recip.      Potential Kinetic En.
     4.83450e+04   -1.74028e+06    4.61777e+03   -1.50175e+06 2.72387e+05
    Total Energy    Temperature Pressure (bar)   Constr. rmsd
    -1.22936e+06    2.95605e+02    6.12269e+00    4.98597e-06

            Step           Time         Lambda
           16000       32.00000        0.00000

    Energies (kJ/mol)
        G96Angle    Proper Dih.  Improper Dih.          LJ-14 Coulomb-14
     3.75292e+04    3.36058e+04    1.67502e+03   -1.43040e+04 1.26396e+05
         LJ (SR)   Coulomb (SR)   Coul. recip.      Potential Kinetic En.
     5.04003e+04   -1.74248e+06    4.70094e+03   -1.50248e+06 2.72324e+05
    Total Energy    Temperature Pressure (bar)   Constr. rmsd
    -1.23015e+06    2.95537e+02    1.64334e+02    4.97314e-06

            Step           Time         Lambda
           18000       36.00000        0.00000

    Energies (kJ/mol)
        G96Angle    Proper Dih.  Improper Dih.          LJ-14 Coulomb-14
     3.81658e+04    3.40675e+04    1.57609e+03   -1.45716e+04 1.26521e+05
         LJ (SR)   Coulomb (SR)   Coul. recip.      Potential Kinetic En.
     5.16244e+04   -1.74247e+06    4.68621e+03   -1.50040e+06 2.71938e+05
    Total Energy    Temperature Pressure (bar)   Constr. rmsd
    -1.22846e+06    2.95118e+02    1.24742e+02    4.97458e-06

            Step           Time         Lambda
           20000       40.00000        0.00000

    Energies (kJ/mol)
        G96Angle    Proper Dih.  Improper Dih.          LJ-14 Coulomb-14
     3.79139e+04    3.35854e+04    1.53764e+03   -1.45186e+04 1.26644e+05
         LJ (SR)   Coulomb (SR)   Coul. recip.      Potential Kinetic En.
     4.93214e+04   -1.74182e+06    4.73934e+03   -1.50259e+06 2.73360e+05
    Total Energy    Temperature Pressure (bar)   Constr. rmsd
    -1.22923e+06    2.96661e+02    5.05927e+01    4.86786e-06

            Step           Time         Lambda
           22000       44.00000        0.00000

    Energies (kJ/mol)
        G96Angle    Proper Dih.  Improper Dih.          LJ-14 Coulomb-14
     3.76891e+04    3.47562e+04    1.65573e+03   -1.45616e+04 1.26527e+05
         LJ (SR)   Coulomb (SR)   Coul. recip.      Potential Kinetic En.
     4.92753e+04   -1.74023e+06    4.73983e+03   -1.50014e+06 2.72006e+05
    Total Energy    Temperature Pressure (bar)   Constr. rmsd
    -1.22814e+06    2.95191e+02   -6.57924e+00    4.96477e-06

            Step           Time         Lambda
           24000       48.00000        0.00000

    Energies (kJ/mol)
        G96Angle    Proper Dih.  Improper Dih.          LJ-14 Coulomb-14
     3.76193e+04    3.44905e+04    1.55150e+03   -1.46070e+04 1.26559e+05
         LJ (SR)   Coulomb (SR)   Coul. recip.      Potential Kinetic En.
     4.90591e+04   -1.73865e+06    4.68991e+03   -1.49929e+06 2.72635e+05
    Total Energy    Temperature Pressure (bar)   Constr. rmsd
    -1.22666e+06    2.95874e+02   -1.64041e+01    4.93705e-06

            Step           Time         Lambda
           26000       52.00000        0.00000

    Energies (kJ/mol)
        G96Angle    Proper Dih.  Improper Dih.          LJ-14 Coulomb-14
     3.79457e+04    3.39780e+04    1.60300e+03   -1.44765e+04 1.26544e+05
         LJ (SR)   Coulomb (SR)   Coul. recip.      Potential Kinetic En.
     4.76575e+04   -1.74067e+06    4.61449e+03   -1.50280e+06 2.73512e+05
    Total Energy    Temperature Pressure (bar)   Constr. rmsd
    -1.22929e+06    2.96826e+02   -1.92726e+01    4.97294e-06

            Step           Time         Lambda
           28000       56.00000        0.00000

    Energies (kJ/mol)
        G96Angle    Proper Dih.  Improper Dih.          LJ-14 Coulomb-14
     3.79846e+04    3.43774e+04    1.55924e+03   -1.44129e+04 1.26602e+05
         LJ (SR)   Coulomb (SR)   Coul. recip.      Potential Kinetic En.
     4.98360e+04   -1.74239e+06    4.60775e+03   -1.50183e+06 2.73156e+05
    Total Energy    Temperature Pressure (bar)   Constr. rmsd
    -1.22868e+06    2.96440e+02    1.20466e+02    4.83686e-06

            Step           Time         Lambda
           30000       60.00000        0.00000

    Energies (kJ/mol)
        G96Angle    Proper Dih.  Improper Dih.          LJ-14 Coulomb-14
     3.79217e+04    3.40808e+04    1.66489e+03   -1.46594e+04 1.26586e+05
         LJ (SR)   Coulomb (SR)   Coul. recip.      Potential Kinetic En.
     4.83414e+04   -1.73951e+06    4.58175e+03   -1.50099e+06 2.73058e+05
    Total Energy    Temperature Pressure (bar)   Constr. rmsd
    -1.22794e+06    2.96333e+02   -7.79706e+01    4.93017e-06

            Step           Time         Lambda
           32000       64.00000        0.00000

    Energies (kJ/mol)
        G96Angle    Proper Dih.  Improper Dih.          LJ-14 Coulomb-14
     3.81304e+04    3.40636e+04    1.62792e+03   -1.46462e+04 1.26630e+05
         LJ (SR)   Coulomb (SR)   Coul. recip.      Potential Kinetic En.
     4.84920e+04   -1.74024e+06    4.61553e+03   -1.50133e+06 2.73041e+05
    Total Energy    Temperature Pressure (bar)   Constr. rmsd
    -1.22829e+06    2.96315e+02   -4.93505e+01    5.00846e-06

            Step           Time         Lambda
           34000       68.00000        0.00000

    Energies (kJ/mol)
        G96Angle    Proper Dih.  Improper Dih.          LJ-14 Coulomb-14
     3.83906e+04    3.35932e+04    1.54746e+03   -1.46102e+04 1.26587e+05
         LJ (SR)   Coulomb (SR)   Coul. recip.      Potential Kinetic En.
     4.65123e+04   -1.73669e+06    4.66940e+03   -1.50000e+06 2.72370e+05
    Total Energy    Temperature Pressure (bar)   Constr. rmsd
    -1.22763e+06    2.95587e+02    3.49948e+01    4.84548e-06

            Step           Time         Lambda
           36000       72.00000        0.00000

    Energies (kJ/mol)
        G96Angle    Proper Dih.  Improper Dih.          LJ-14 Coulomb-14
     3.79808e+04    3.39248e+04    1.65090e+03   -1.45744e+04 1.26665e+05
         LJ (SR)   Coulomb (SR)   Coul. recip.      Potential Kinetic En.
     4.81267e+04   -1.73795e+06    4.67039e+03   -1.49951e+06 2.71574e+05
    Total Energy    Temperature Pressure (bar)   Constr. rmsd
    -1.22793e+06    2.94723e+02   -2.77373e+00    5.00708e-06

            Step           Time         Lambda
           38000       76.00000        0.00000

    Energies (kJ/mol)
        G96Angle    Proper Dih.  Improper Dih.          LJ-14 Coulomb-14
     3.76108e+04    3.39492e+04    1.61483e+03   -1.46447e+04 1.26405e+05
         LJ (SR)   Coulomb (SR)   Coul. recip.      Potential Kinetic En.
     4.86239e+04   -1.74192e+06    4.64354e+03   -1.50372e+06 2.72468e+05
    Total Energy    Temperature Pressure (bar)   Constr. rmsd
    -1.23125e+06    2.95694e+02   -3.46091e+01    4.83479e-06

            Step           Time         Lambda
           40000       80.00000        0.00000

    Energies (kJ/mol)
        G96Angle    Proper Dih.  Improper Dih.          LJ-14 Coulomb-14
     3.75317e+04    3.42019e+04    1.62794e+03   -1.45424e+04 1.26466e+05
         LJ (SR)   Coulomb (SR)   Coul. recip.      Potential Kinetic En.
     4.96389e+04   -1.74253e+06    4.68602e+03   -1.50292e+06 2.72934e+05
    Total Energy    Temperature Pressure (bar)   Constr. rmsd
    -1.22999e+06    2.96198e+02    3.22313e+01    5.02197e-06

            Step           Time         Lambda
           42000       84.00000        0.00000

    Energies (kJ/mol)
        G96Angle    Proper Dih.  Improper Dih.          LJ-14 Coulomb-14
     3.80765e+04    3.42050e+04    1.52647e+03   -1.45472e+04 1.26425e+05
         LJ (SR)   Coulomb (SR)   Coul. recip.      Potential Kinetic En.
     4.95822e+04   -1.74110e+06    4.69777e+03   -1.50113e+06 2.72607e+05
    Total Energy    Temperature Pressure (bar)   Constr. rmsd
    -1.22852e+06    2.95843e+02   -1.13640e+01    4.92608e-06

            Step           Time         Lambda
           44000       88.00000        0.00000

    Energies (kJ/mol)
        G96Angle    Proper Dih.  Improper Dih.          LJ-14 Coulomb-14
     3.78492e+04    3.40960e+04    1.63704e+03   -1.45698e+04 1.26346e+05
         LJ (SR)   Coulomb (SR)   Coul. recip.      Potential Kinetic En.
     4.75518e+04   -1.73985e+06    4.59341e+03   -1.50234e+06 2.72002e+05
    Total Energy    Temperature Pressure (bar)   Constr. rmsd
    -1.23034e+06    2.95187e+02   -8.41246e+01    5.03544e-06

            Step           Time         Lambda
           46000       92.00000        0.00000

    Energies (kJ/mol)
        G96Angle    Proper Dih.  Improper Dih.          LJ-14 Coulomb-14
     3.77658e+04    3.42858e+04    1.67298e+03   -1.47786e+04 1.26686e+05
         LJ (SR)   Coulomb (SR)   Coul. recip.      Potential Kinetic En.
     4.93716e+04   -1.74306e+06    4.61603e+03   -1.50344e+06 2.74380e+05
    Total Energy    Temperature Pressure (bar)   Constr. rmsd
    -1.22906e+06    2.97768e+02   -2.28804e+01    4.95687e-06

            Step           Time         Lambda
           48000       96.00000        0.00000

    Energies (kJ/mol)
        G96Angle    Proper Dih.  Improper Dih.          LJ-14 Coulomb-14
     3.82197e+04    3.34201e+04    1.57555e+03   -1.46122e+04 1.26530e+05
         LJ (SR)   Coulomb (SR)   Coul. recip.      Potential Kinetic En.
     4.77465e+04   -1.73781e+06    4.69134e+03   -1.50024e+06 2.72870e+05
    Total Energy    Temperature Pressure (bar)   Constr. rmsd
    -1.22737e+06    2.96129e+02    2.47163e+01    4.86327e-06

Writing checkpoint, step 48640 at Mon May  6 21:34:34 2013


            Step           Time         Lambda
           50000      100.00000        0.00000


-------------------------------------------------------
Program mdrun, VERSION 4.6.1
Source code file: 
/home/cintia/Downloads/gromacs-4.6.1/src/mdlib/nbnxn_cuda/nbnxn_cuda.cu, 
line: 565

Fatal error:
cudaStreamSynchronize failed in cu_blockwait_nb: unspecified launch failure

For more information and tips for troubleshooting, please check the GROMACS
website at http://www.gromacs.org/Documentation/Errors
-------------------------------------------------------

"O My God, They Killed Kenny !" (South Park)




More information about the gromacs.org_gmx-users mailing list