[gmx-users] 答复: Can't allocate memory problem

Yunlong Liu yliu120 at jhmi.edu
Fri Jul 18 20:29:25 CEST 2014


Hi Mark,

I post up my log file for the run here. Thank you.

Log file opened on Wed Jul 16 11:26:51 2014
Host: c442-403.stampede.tacc.utexas.edu  pid: 31032  nodeid: 0  nnodes:  4
GROMACS:    mdrun_mpi_gpu, VERSION 5.0-rc1

GROMACS is written by:
Emile Apol         Rossen Apostolov   Herman J.C. Berendsen Par Bjelkmar       
Aldert van Buuren  Rudi van Drunen    Anton Feenstra     Sebastian Fritsch  
Gerrit Groenhof    Christoph Junghans Peter Kasson       Carsten Kutzner    
Per Larsson        Justin A. Lemkul   Magnus Lundborg    Pieter Meulenhoff  
Erik Marklund      Teemu Murtola      Szilard Pall       Sander Pronk       
Roland Schulz      Alexey Shvetsov    Michael Shirts     Alfons Sijbers     
Peter Tieleman     Christian Wennberg Maarten Wolf       
and the project leaders:
Mark Abraham, Berk Hess, Erik Lindahl, and David van der Spoel

Copyright (c) 1991-2000, University of Groningen, The Netherlands.
Copyright (c) 2001-2014, The GROMACS development team at
Uppsala University, Stockholm University and
the Royal Institute of Technology, Sweden.
check out http://www.gromacs.org for more information.

GROMACS is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License
as published by the Free Software Foundation; either version 2.1
of the License, or (at your option) any later version.

GROMACS:      mdrun_mpi_gpu, VERSION 5.0-rc1
Executable:   /work/03002/yliu120/gromacs-5.0/mv2_mkl/bin/mdrun_mpi_gpu
Library dir:  /work/03002/yliu120/gromacs-5.0/mv2_mkl/share/gromacs/top
Command line:
  mdrun_mpi_gpu -pin on -ntomp 8 -deffnm pi3k-wt-1 -gpu_id 00

Gromacs version:    VERSION 5.0-rc1
Precision:          single
Memory model:       64 bit
MPI library:        MPI
OpenMP support:     enabled
GPU support:        enabled
invsqrt routine:    gmx_software_invsqrt(x)
SIMD instructions:  AVX_256
FFT library:        Intel MKL
RDTSCP usage:       enabled
C++11 compilation:  disabled
TNG support:        enabled
Tracing support:    disabled
Built on:           Wed Jun  4 13:59:17 CDT 2014
Built by:           xzhu216 at login1.stampede.tacc.utexas.edu [CMAKE]
Build OS/arch:      Linux 2.6.32-358.18.1.el6.x86_64 x86_64
Build CPU vendor:   GenuineIntel
Build CPU brand:    Intel(R) Xeon(R) CPU E5-2680 0 @ 2.70GHz
Build CPU family:   6   Model: 45   Stepping: 7
Build CPU features: aes apic avx clfsh cmov cx8 cx16 htt lahf_lm mmx msr nonstop_tsc pcid pclmuldq pdcm pdpe1gb popcnt pse rdtscp sse2 sse3 sse4.1 sse4.2 ssse3 tdt x2apic
C compiler:         /opt/apps/intel/13/composer_xe_2013.2.146/bin/intel64/icc Intel 13.1.0.20130121
C compiler flags:    -mavx  -fno-strict-aliasing  -mkl=sequential -std=gnu99 -w3 -wd111 -wd177 -wd181 -wd193 -wd271 -wd304 -wd383 -wd424 -wd444 -wd522 -wd593 -wd869 -wd981 -wd1418 -wd1419 -wd1572 -wd1599 -wd2259 -wd2415 -wd2547 -wd2557 -wd3280 -wd3346   -ip -funroll-all-loops -alias-const -ansi-alias   -O3 -DNDEBUG
C++ compiler:       /opt/apps/intel/13/composer_xe_2013.2.146/bin/intel64/icpc Intel 13.1.0.20130121
C++ compiler flags:  -mavx  -fno-strict-aliasing  -w3 -wd111 -wd177 -wd181 -wd193 -wd271 -wd304 -wd383 -wd424 -wd444 -wd522 -wd593 -wd869 -wd981 -wd1418 -wd1419 -wd1572 -wd1599 -wd2259 -wd2415 -wd2547 -wd2557 -wd3280 -wd3346 -wd1782   -ip -funroll-all-loops -alias-const -ansi-alias   -O3 -DNDEBUG
Boost version:      1.51.0 (external)
CUDA compiler:      /opt/apps/cuda/5.0/bin/nvcc nvcc: NVIDIA (R) Cuda compiler driver;Copyright (c) 2005-2012 NVIDIA Corporation;Built on Fri_Sep_21_17:28:58_PDT_2012;Cuda compilation tools, release 5.0, V0.2.1221
CUDA compiler flags:-gencode;arch=compute_20,code=sm_20;-gencode;arch=compute_20,code=sm_21;-gencode;arch=compute_30,code=sm_30;-gencode;arch=compute_35,code=sm_35;-gencode;arch=compute_35,code=compute_35;-use_fast_math;-ccbin=/opt/apps/intel/13/composer_xe_2013.2.146/bin/intel64/icc;;-Xcompiler;-gcc-version=450;; ;-mavx;-fno-strict-aliasing;-w3;-wd111;-wd177;-wd181;-wd193;-wd271;-wd304;-wd383;-wd424;-wd444;-wd522;-wd593;-wd869;-wd981;-wd1418;-wd1419;-wd1572;-wd1599;-wd2259;-wd2415;-wd2547;-wd2557;-wd3280;-wd3346;-wd1782;-ip;-funroll-all-loops;-alias-const;-ansi-alias;-O3;-DNDEBUG
CUDA driver:        5.50
CUDA runtime:       5.0



++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
B. Hess and C. Kutzner and D. van der Spoel and E. Lindahl
GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable
molecular simulation
J. Chem. Theory Comput. 4 (2008) pp. 435-447
-------- -------- --- Thank You --- -------- --------


++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark and H. J. C.
Berendsen
GROMACS: Fast, Flexible and Free
J. Comp. Chem. 26 (2005) pp. 1701-1719
-------- -------- --- Thank You --- -------- --------


++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
E. Lindahl and B. Hess and D. van der Spoel
GROMACS 3.0: A package for molecular simulation and trajectory analysis
J. Mol. Mod. 7 (2001) pp. 306-317
-------- -------- --- Thank You --- -------- --------


++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
H. J. C. Berendsen, D. van der Spoel and R. van Drunen
GROMACS: A message-passing parallel molecular dynamics implementation
Comp. Phys. Comm. 91 (1995) pp. 43-56
-------- -------- --- Thank You --- -------- --------


Number of CPUs detected (16) does not match the number reported by OpenMP (1).
Consider setting the launch configuration manually!

For optimal performance with a GPU nstlist (now 5) should be larger.
The optimum depends on your CPU and GPU resources.
You might want to try several nstlist values.
Changing nstlist from 5 to 40, rlist from 1 to 1.093

Input Parameters:
   integrator                     = md
   nsteps               = 5000000
   init-step            = 0
   cutoff-scheme                  = Verlet
   ns-type                        = Grid
   nstlist              = 40
   ndelta               = 2
   nstcomm              = 100
   comm-mode                      = Linear
   nstlog               = 10000
   nstxout              = 10000
   nstvout              = 10000
   nstfout              = 0
   nstcalcenergy        = 100
   nstenergy            = 10000
   nstxout-compressed   = 10000
   init-t               = 0
   delta-t              = 0.002
   x-compression-precision = 1000
   fourierspacing       = 0.16
   nkx                  = 96
   nky                  = 96
   nkz                  = 96
   pme-order            = 4
   ewald-rtol           = 1e-05
   ewald-rtol-lj        = 0.001
   ewald-geometry       = 0
   epsilon-surface      = 0
   optimize-fft                   = FALSE
   lj-pme-comb-rule               = Geometric
   ePBC                           = xyz
   bPeriodicMols                  = FALSE
   bContinuation                  = TRUE
   bShakeSOR                      = FALSE
   etc                            = V-rescale
   bPrintNHChains                 = FALSE
   nsttcouple           = 5
   epc                            = Parrinello-Rahman
   epctype                        = Isotropic
   nstpcouple           = 5
   tau-p                = 2
   ref-p (3x3):
      ref-p[    0]={ 1.00000e+00,  0.00000e+00,  0.00000e+00}
      ref-p[    1]={ 0.00000e+00,  1.00000e+00,  0.00000e+00}
      ref-p[    2]={ 0.00000e+00,  0.00000e+00,  1.00000e+00}
   compress (3x3):
      compress[    0]={ 4.50000e-05,  0.00000e+00,  0.00000e+00}
      compress[    1]={ 0.00000e+00,  4.50000e-05,  0.00000e+00}
      compress[    2]={ 0.00000e+00,  0.00000e+00,  4.50000e-05}
   refcoord-scaling               = No
   posres-com (3):
      posres-com[0]= 0.00000e+00
      posres-com[1]= 0.00000e+00
      posres-com[2]= 0.00000e+00
   posres-comB (3):
      posres-comB[0]= 0.00000e+00
      posres-comB[1]= 0.00000e+00
      posres-comB[2]= 0.00000e+00
   verlet-buffer-tolerance = 0.005
   rlist                = 1.093
   rlistlong            = 1.093
   nstcalclr            = 5
   rtpi                 = 0.05
   coulombtype                    = PME
   coulomb-modifier               = Potential-shift
   rcoulomb-switch      = 0
   rcoulomb             = 1
   vdwtype                        = Cut-off
   vdw-modifier                   = Potential-shift
   rvdw-switch          = 0
   rvdw                 = 1
   epsilon-r            = 1
   epsilon-rf                     = inf
   tabext               = 1
   implicit-solvent               = No
   gb-algorithm                   = Still
   gb-epsilon-solvent   = 80
   nstgbradii           = 1
   rgbradii             = 1
   gb-saltconc          = 0
   gb-obc-alpha         = 1
   gb-obc-beta          = 0.8
   gb-obc-gamma         = 4.85
   gb-dielectric-offset = 0.009
   sa-algorithm                   = Ace-approximation
   sa-surface-tension   = 2.05016
   DispCorr                       = EnerPres
   bSimTemp                       = FALSE
   free-energy                    = no
   nwall                = 0
   wall-type                      = 9-3
   wall-atomtype[0]     = -1
   wall-atomtype[1]     = -1
   wall-density[0]      = 0
   wall-density[1]      = 0
   wall-ewald-zfac      = 3
   pull                           = no
   rotation                       = FALSE
   interactiveMD                  = FALSE
   disre                          = No
   disre-weighting                = Conservative
   disre-mixed                    = FALSE
   dr-fc                = 1000
   dr-tau               = 0
   nstdisreout          = 100
   orires-fc            = 0
   orires-tau           = 0
   nstorireout          = 100
   dihre-fc             = 0
   em-stepsize          = 0.01
   em-tol               = 10
   niter                = 20
   fc-stepsize          = 0
   nstcgsteep           = 1000
   nbfgscorr            = 10
   ConstAlg                       = Lincs
   shake-tol            = 0.0001
   lincs-order          = 4
   lincs-warnangle      = 30
   lincs-iter           = 1
   bd-fric              = 0
   ld-seed              = 645545913
   cos-accel            = 0
   deform (3x3):
      deform[    0]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
      deform[    1]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
      deform[    2]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
   adress                         = FALSE
   userint1             = 0
   userint2             = 0
   userint3             = 0
   userint4             = 0
   userreal1            = 0
   userreal2            = 0
   userreal3            = 0
   userreal4            = 0
grpopts:
   nrdf:     42998.7      429867
   ref-t:         310         310
   tau-t:         0.1         0.1
anneal:          No          No
ann-npoints:           0           0
   acc:	           0           0           0
   nfreeze:           N           N           N
   energygrp-flags[  0]: 0
   efield-x:
      n = 0
   efield-xt:
      n = 0
   efield-y:
      n = 0
   efield-yt:
      n = 0
   efield-z:
      n = 0
   efield-zt:
      n = 0
   eSwapCoords                    = no
   bQMMM                          = FALSE
   QMconstraints        = 0
   QMMMscheme           = 0
   scalefactor          = 1
qm-opts:
   ngQM                 = 0

Initializing Domain Decomposition on 4 nodes
Dynamic load balancing: auto
Will sort the charge groups at every domain (re)decomposition
Initial maximum inter charge-group distances:
    two-body bonded interactions: 0.429 nm, LJ-14, atoms 13175 13183
  multi-body bonded interactions: 0.489 nm, CMAP Dih., atoms 18312 18321
Minimum cell size due to bonded interactions: 0.537 nm
Maximum distance for 5 constraints, at 120 deg. angles, all-trans: 0.819 nm
Estimated maximum distance required for P-LINCS: 0.819 nm
This distance will limit the DD cell size, you can override this with -rcon
Using 0 separate PME nodes, as there are too few total
 nodes for efficient splitting
Scaling the initial minimum size with 1/0.8 (option -dds) = 1.25
Optimizing the DD grid for 4 cells with a minimum initial size of 1.024 nm
The maximum allowed number of cells is: X 11 Y 11 Z 10
Domain decomposition grid 4 x 1 x 1, separate PME nodes 0
PME domain decomposition: 4 x 1 x 1
Domain decomposition nodeid 0, coordinates 0 0 0

Using two step summing over 2 groups of on average 2.0 processes

Using 4 MPI processes
Using 8 OpenMP threads per MPI process

Detecting CPU SIMD instructions.
Present hardware specification:
Vendor: GenuineIntel
Brand:  Intel(R) Xeon(R) CPU E5-2680 0 @ 2.70GHz
Family:  6  Model: 45  Stepping:  7
Features: aes apic avx clfsh cmov cx8 cx16 htt lahf_lm mmx msr nonstop_tsc pcid pclmuldq pdcm pdpe1gb popcnt pse rdtscp sse2 sse3 sse4.1 sse4.2 ssse3 tdt x2apic
SIMD instructions most likely to fit this hardware: AVX_256
SIMD instructions selected at GROMACS compile time: AVX_256


1 GPU detected on host c442-403.stampede.tacc.utexas.edu:
  #0: NVIDIA Tesla K20m, compute cap.: 3.5, ECC: yes, stat: compatible

1 GPU user-selected for this run.
Mapping of GPUs to the 2 PP ranks in this node: #0, #0

NOTE: You assigned a GPU to multiple MPI processes.
Will do PME sum in reciprocal space for electrostatic interactions.

++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee and L. G. Pedersen 
A smooth particle mesh Ewald method
J. Chem. Phys. 103 (1995) pp. 8577-8592
-------- -------- --- Thank You --- -------- --------

Will do ordinary reciprocal space Ewald sum.
Using a Gaussian width (1/beta) of 0.320163 nm for Ewald
Cut-off's:   NS: 1.093   Coulomb: 1   LJ: 1
Long Range LJ corr.: <C6> 3.1875e-04
System total charge: 1.000
Generated table with 1046 data points for Ewald.
Tabscale = 500 points/nm
Generated table with 1046 data points for LJ6.
Tabscale = 500 points/nm
Generated table with 1046 data points for LJ12.
Tabscale = 500 points/nm
Generated table with 1046 data points for 1-4 COUL.
Tabscale = 500 points/nm
Generated table with 1046 data points for 1-4 LJ6.
Tabscale = 500 points/nm
Generated table with 1046 data points for 1-4 LJ12.
Tabscale = 500 points/nm

Using CUDA 8x8 non-bonded kernels

Potential shift: LJ r^-12: -1.000e+00 r^-6: -1.000e+00, Ewald -1.000e-05
Initialized non-bonded Ewald correction tables, spacing: 6.52e-04 size: 1536


Overriding thread affinity set outside mdrun_mpi_gpu

Pinning threads with an auto-selected logical core stride of 1

Initializing Parallel LINear Constraint Solver

++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
B. Hess
P-LINCS: A Parallel Linear Constraint Solver for molecular simulation
J. Chem. Theory Comput. 4 (2008) pp. 116-122
-------- -------- --- Thank You --- -------- --------

The number of constraints is 21852
There are inter charge-group constraints,
will communicate selected coordinates each lincs iteration

++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
S. Miyamoto and P. A. Kollman
SETTLE: An Analytical Version of the SHAKE and RATTLE Algorithms for Rigid
Water Models
J. Comp. Chem. 13 (1992) pp. 952-962
-------- -------- --- Thank You --- -------- --------


Linking all bonded interactions to atoms
There are 333337 inter charge-group exclusions,
will use an extra communication step for exclusion forces for PME

The initial number of communication pulses is: X 1
The initial domain decomposition cell size is: X 3.06 nm

The maximum allowed distance for charge groups involved in interactions is:
                 non-bonded interactions           1.093 nm
(the following are initial values, they could change due to box deformation)
            two-body bonded interactions  (-rdd)   1.093 nm
          multi-body bonded interactions  (-rdd)   1.093 nm
  atoms separated by up to 5 constraints  (-rcon)  3.061 nm

When dynamic load balancing gets turned on, these settings will change to:
The maximum number of communication pulses is: X 1
The minimum size for domain decomposition cells is 1.093 nm
The requested allowed shrink of DD cells (option -dds) is: 0.80
The allowed shrink of domain decomposition cells is: X 0.36
The maximum allowed distance for charge groups involved in interactions is:
                 non-bonded interactions           1.093 nm
            two-body bonded interactions  (-rdd)   1.093 nm
          multi-body bonded interactions  (-rdd)   1.093 nm
  atoms separated by up to 5 constraints  (-rcon)  1.093 nm


Making 1D domain decomposition grid 4 x 1 x 1, home cell index 0 0 0

Center of mass motion removal mode is Linear
We have the following groups for center of mass motion removal:
  0:  rest

++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
G. Bussi, D. Donadio and M. Parrinello
Canonical sampling through velocity rescaling
J. Chem. Phys. 126 (2007) pp. 014101
-------- -------- --- Thank You --- -------- --------

There are: 236549 Atoms
Charge group distribution at step 0: 58642 59637 59750 58520
Initial temperature: 310.644 K

Started mdrun on node 0 Wed Jul 16 11:26:55 2014
           Step           Time         Lambda
              0        0.00000        0.00000

   Energies (kJ/mol)
            U-B    Proper Dih.  Improper Dih.      CMAP Dih.          LJ-14
    5.07365e+04    2.95121e+04    3.01332e+03   -7.32021e+03    1.97198e+04
     Coulomb-14        LJ (SR)  Disper. corr.   Coulomb (SR)   Coul. recip.
    2.01566e+05    4.01053e+05   -3.13304e+04   -3.70280e+06    2.22526e+04
      Potential    Kinetic En.   Total Energy    Temperature Pres. DC (bar)
   -3.01359e+06    6.13614e+05   -2.39998e+06    3.12141e+02   -2.18173e+02
 Pressure (bar)   Constr. rmsd
   -3.47613e+01    3.40465e-05

DD  step 39 load imb.: force 16.2%

step   80: timed with pme grid 96 96 96, coulomb cutoff 1.000: 1156.6 M-cycles
step  160: timed with pme grid 80 80 80, coulomb cutoff 1.172: 1547.8 M-cycles
step  240: timed with pme grid 96 96 96, coulomb cutoff 1.000: 1151.5 M-cycles
step  320: timed with pme grid 84 84 84, coulomb cutoff 1.116: 1385.3 M-cycles
              optimal pme grid 96 96 96, coulomb cutoff 1.000
DD  step 9999 load imb.: force 12.0%

           Step           Time         Lambda
          10000       20.00000        0.00000

   Energies (kJ/mol)
            U-B    Proper Dih.  Improper Dih.      CMAP Dih.          LJ-14
    5.04795e+04    2.99195e+04    2.92288e+03   -7.24773e+03    2.00091e+04
     Coulomb-14        LJ (SR)  Disper. corr.   Coulomb (SR)   Coul. recip.
    2.01757e+05    4.01852e+05   -3.13182e+04   -3.70354e+06    2.21148e+04
      Potential    Kinetic En.   Total Energy    Temperature Pres. DC (bar)
   -3.01305e+06    6.07693e+05   -2.40536e+06    3.09129e+02   -2.18004e+02
 Pressure (bar)   Constr. rmsd
    4.97661e+01    3.21278e-05

DD  step 19999 load imb.: force 12.9%

           Step           Time         Lambda
          20000       40.00000        0.00000

   Energies (kJ/mol)
            U-B    Proper Dih.  Improper Dih.      CMAP Dih.          LJ-14
    5.03101e+04    2.98583e+04    2.92319e+03   -7.24572e+03    1.98643e+04
     Coulomb-14        LJ (SR)  Disper. corr.   Coulomb (SR)   Coul. recip.
    2.02386e+05    4.04043e+05   -3.13265e+04   -3.70922e+06    2.22318e+04
      Potential    Kinetic En.   Total Energy    Temperature Pres. DC (bar)
   -3.01618e+06    6.10725e+05   -2.40545e+06    3.10671e+02   -2.18119e+02
 Pressure (bar)   Constr. rmsd
    5.25345e+01    3.19849e-05

DD  step 29999 load imb.: force 12.9%

           Step           Time         Lambda
          30000       60.00000        0.00000

   Energies (kJ/mol)
            U-B    Proper Dih.  Improper Dih.      CMAP Dih.          LJ-14
    5.04086e+04    2.98208e+04    2.96232e+03   -7.36511e+03    1.97707e+04
     Coulomb-14        LJ (SR)  Disper. corr.   Coulomb (SR)   Coul. recip.
    2.02219e+05    4.04588e+05   -3.13898e+04   -3.70933e+06    2.18899e+04
      Potential    Kinetic En.   Total Energy    Temperature Pres. DC (bar)
   -3.01643e+06    6.09712e+05   -2.40671e+06    3.10156e+02   -2.19002e+02
 Pressure (bar)   Constr. rmsd
    1.69563e+01    3.28362e-05

DD  step 39999 load imb.: force 13.6%

           Step           Time         Lambda
          40000       80.00000        0.00000

   Energies (kJ/mol)
            U-B    Proper Dih.  Improper Dih.      CMAP Dih.          LJ-14
    5.08454e+04    2.97168e+04    2.88905e+03   -7.38898e+03    1.97906e+04
     Coulomb-14        LJ (SR)  Disper. corr.   Coulomb (SR)   Coul. recip.
    2.01724e+05    4.00249e+05   -3.13130e+04   -3.70497e+06    2.19180e+04
      Potential    Kinetic En.   Total Energy    Temperature Pres. DC (bar)
   -3.01654e+06    6.09973e+05   -2.40657e+06    3.10288e+02   -2.17931e+02
 Pressure (bar)   Constr. rmsd
   -4.75665e+01    3.26365e-05

DD  step 49999 load imb.: force 15.1%

           Step           Time         Lambda
          50000      100.00000        0.00000

   Energies (kJ/mol)
            U-B    Proper Dih.  Improper Dih.      CMAP Dih.          LJ-14
    5.05524e+04    2.96917e+04    2.93777e+03   -7.29600e+03    1.98992e+04
     Coulomb-14        LJ (SR)  Disper. corr.   Coulomb (SR)   Coul. recip.
    2.01154e+05    4.02695e+05   -3.12880e+04   -3.70590e+06    2.18002e+04
      Potential    Kinetic En.   Total Energy    Temperature Pres. DC (bar)
   -3.01576e+06    6.07954e+05   -2.40780e+06    3.09262e+02   -2.17584e+02
 Pressure (bar)   Constr. rmsd
   -7.76501e+00    3.21618e-05

DD  step 59999 load imb.: force 12.5%

           Step           Time         Lambda
          60000      120.00000        0.00000

   Energies (kJ/mol)
            U-B    Proper Dih.  Improper Dih.      CMAP Dih.          LJ-14
    5.00781e+04    3.00110e+04    3.14274e+03   -7.37195e+03    2.00457e+04
     Coulomb-14        LJ (SR)  Disper. corr.   Coulomb (SR)   Coul. recip.
    2.02606e+05    4.01699e+05   -3.13388e+04   -3.70509e+06    2.19611e+04
      Potential    Kinetic En.   Total Energy    Temperature Pres. DC (bar)
   -3.01426e+06    6.09684e+05   -2.40458e+06    3.10142e+02   -2.18291e+02
 Pressure (bar)   Constr. rmsd
   -3.63586e-01    3.19734e-05

DD  step 69999 load imb.: force 11.2%

           Step           Time         Lambda
          70000      140.00000        0.00000

   Energies (kJ/mol)
            U-B    Proper Dih.  Improper Dih.      CMAP Dih.          LJ-14
    5.08759e+04    2.99581e+04    2.98187e+03   -7.47015e+03    1.97981e+04
     Coulomb-14        LJ (SR)  Disper. corr.   Coulomb (SR)   Coul. recip.
    2.02357e+05    4.01634e+05   -3.13895e+04   -3.70518e+06    2.19320e+04
      Potential    Kinetic En.   Total Energy    Temperature Pres. DC (bar)
   -3.01450e+06    6.10453e+05   -2.40404e+06    3.10533e+02   -2.18998e+02
 Pressure (bar)   Constr. rmsd
   -5.49562e+01    3.32050e-05

DD  step 79999 load imb.: force 12.7%

           Step           Time         Lambda
          80000      160.00000        0.00000

   Energies (kJ/mol)
            U-B    Proper Dih.  Improper Dih.      CMAP Dih.          LJ-14
    5.02476e+04    2.99203e+04    3.01794e+03   -7.41418e+03    1.99012e+04
     Coulomb-14        LJ (SR)  Disper. corr.   Coulomb (SR)   Coul. recip.
    2.02636e+05    3.99866e+05   -3.13105e+04   -3.70666e+06    2.17894e+04
      Potential    Kinetic En.   Total Energy    Temperature Pres. DC (bar)
   -3.01801e+06    6.10188e+05   -2.40782e+06    3.10398e+02   -2.17897e+02
 Pressure (bar)   Constr. rmsd
   -7.82256e+01    3.22503e-05

Writing checkpoint, step 84280 at Wed Jul 16 11:41:55 2014


DD  step 89999 load imb.: force  9.5%

           Step           Time         Lambda
          90000      180.00000        0.00000

   Energies (kJ/mol)
            U-B    Proper Dih.  Improper Dih.      CMAP Dih.          LJ-14
    5.04253e+04    3.01029e+04    3.04981e+03   -7.29947e+03    1.98989e+04
     Coulomb-14        LJ (SR)  Disper. corr.   Coulomb (SR)   Coul. recip.
    2.02004e+05    4.03726e+05   -3.12806e+04   -3.70717e+06    2.20550e+04
      Potential    Kinetic En.   Total Energy    Temperature Pres. DC (bar)
   -3.01449e+06    6.08805e+05   -2.40568e+06    3.09694e+02   -2.17480e+02
 Pressure (bar)   Constr. rmsd
    2.29629e+01    3.23359e-05

DD  step 99999 load imb.: force 11.4%

           Step           Time         Lambda
         100000      200.00000        0.00000

   Energies (kJ/mol)
            U-B    Proper Dih.  Improper Dih.      CMAP Dih.          LJ-14
    5.05809e+04    2.97365e+04    2.90575e+03   -7.46760e+03    2.00142e+04
     Coulomb-14        LJ (SR)  Disper. corr.   Coulomb (SR)   Coul. recip.
    2.02442e+05    4.02628e+05   -3.13276e+04   -3.70909e+06    2.19456e+04
      Potential    Kinetic En.   Total Energy    Temperature Pres. DC (bar)
   -3.01763e+06    6.09703e+05   -2.40793e+06    3.10151e+02   -2.18135e+02
 Pressure (bar)   Constr. rmsd
    2.61670e+01    3.23152e-05

DD  step 109999 load imb.: force 11.5%

           Step           Time         Lambda
         110000      220.00000        0.00000

   Energies (kJ/mol)
            U-B    Proper Dih.  Improper Dih.      CMAP Dih.          LJ-14
    5.04489e+04    2.98261e+04    2.96408e+03   -7.46597e+03    1.99103e+04
     Coulomb-14        LJ (SR)  Disper. corr.   Coulomb (SR)   Coul. recip.
    2.01929e+05    4.04057e+05   -3.13158e+04   -3.70812e+06    2.21537e+04
      Potential    Kinetic En.   Total Energy    Temperature Pres. DC (bar)
   -3.01561e+06    6.09714e+05   -2.40590e+06    3.10157e+02   -2.17970e+02
 Pressure (bar)   Constr. rmsd
    3.75535e+01    3.23884e-05

DD  step 119999 load imb.: force 13.4%

           Step           Time         Lambda
         120000      240.00000        0.00000

   Energies (kJ/mol)
            U-B    Proper Dih.  Improper Dih.      CMAP Dih.          LJ-14
    5.02048e+04    2.96834e+04    2.99140e+03   -7.47253e+03    1.98509e+04
     Coulomb-14        LJ (SR)  Disper. corr.   Coulomb (SR)   Coul. recip.
    2.02924e+05    4.00695e+05   -3.13677e+04   -3.70737e+06    2.19556e+04
      Potential    Kinetic En.   Total Energy    Temperature Pres. DC (bar)
   -3.01790e+06    6.09085e+05   -2.40882e+06    3.09837e+02   -2.18693e+02
 Pressure (bar)   Constr. rmsd
   -4.17847e+01    3.24539e-05

DD  step 129999 load imb.: force 13.9%

           Step           Time         Lambda
         130000      260.00000        0.00000

   Energies (kJ/mol)
            U-B    Proper Dih.  Improper Dih.      CMAP Dih.          LJ-14
    4.99271e+04    2.98272e+04    2.93917e+03   -7.27635e+03    1.98999e+04
     Coulomb-14        LJ (SR)  Disper. corr.   Coulomb (SR)   Coul. recip.
    2.02518e+05    3.97726e+05   -3.13026e+04   -3.70217e+06    2.20807e+04
      Potential    Kinetic En.   Total Energy    Temperature Pres. DC (bar)
   -3.01583e+06    6.09694e+05   -2.40614e+06    3.10147e+02   -2.17788e+02
 Pressure (bar)   Constr. rmsd
   -1.15382e+02    3.19481e-05

DD  step 139999 load imb.: force 10.1%

           Step           Time         Lambda
         140000      280.00000        0.00000

   Energies (kJ/mol)
            U-B    Proper Dih.  Improper Dih.      CMAP Dih.          LJ-14
    5.03356e+04    2.97673e+04    2.87730e+03   -7.47602e+03    1.97827e+04
     Coulomb-14        LJ (SR)  Disper. corr.   Coulomb (SR)   Coul. recip.
    2.02578e+05    4.02705e+05   -3.12475e+04   -3.70659e+06    2.19426e+04
      Potential    Kinetic En.   Total Energy    Temperature Pres. DC (bar)
   -3.01532e+06    6.06119e+05   -2.40920e+06    3.08328e+02   -2.17021e+02
 Pressure (bar)   Constr. rmsd
   -4.87389e+01    3.29943e-05

DD  step 149999 load imb.: force 12.0%

           Step           Time         Lambda
         150000      300.00000        0.00000

   Energies (kJ/mol)
            U-B    Proper Dih.  Improper Dih.      CMAP Dih.          LJ-14
    5.01586e+04    2.98972e+04    2.97697e+03   -7.38809e+03    1.99546e+04
     Coulomb-14        LJ (SR)  Disper. corr.   Coulomb (SR)   Coul. recip.
    2.02136e+05    4.04987e+05   -3.13378e+04   -3.71164e+06    2.18617e+04
      Potential    Kinetic En.   Total Energy    Temperature Pres. DC (bar)
   -3.01840e+06    6.08594e+05   -2.40980e+06    3.09587e+02   -2.18277e+02
 Pressure (bar)   Constr. rmsd
    4.10102e+01    3.20743e-05

DD  step 159999 load imb.: force 11.6%

           Step           Time         Lambda
         160000      320.00000        0.00000

   Energies (kJ/mol)
            U-B    Proper Dih.  Improper Dih.      CMAP Dih.          LJ-14
    5.02983e+04    2.99181e+04    2.94672e+03   -7.49915e+03    1.99437e+04
     Coulomb-14        LJ (SR)  Disper. corr.   Coulomb (SR)   Coul. recip.
    2.03281e+05    4.00190e+05   -3.12908e+04   -3.70493e+06    2.23782e+04
      Potential    Kinetic En.   Total Energy    Temperature Pres. DC (bar)
   -3.01477e+06    6.09016e+05   -2.40575e+06    3.09802e+02   -2.17623e+02
 Pressure (bar)   Constr. rmsd
   -6.39499e+01    3.24603e-05

Writing checkpoint, step 168560 at Wed Jul 16 11:56:56 2014


DD  step 169999 load imb.: force 12.3%

           Step           Time         Lambda
         170000      340.00000        0.00000

   Energies (kJ/mol)
            U-B    Proper Dih.  Improper Dih.      CMAP Dih.          LJ-14
    4.96860e+04    2.97866e+04    2.87484e+03   -7.42084e+03    1.98346e+04
     Coulomb-14        LJ (SR)  Disper. corr.   Coulomb (SR)   Coul. recip.
    2.03200e+05    4.05459e+05   -3.13545e+04   -3.71085e+06    2.20106e+04
      Potential    Kinetic En.   Total Energy    Temperature Pres. DC (bar)
   -3.01677e+06    6.08386e+05   -2.40839e+06    3.09481e+02   -2.18509e+02
 Pressure (bar)   Constr. rmsd
    7.35129e+01    3.22101e-05

DD  step 179999 load imb.: force 12.5%

           Step           Time         Lambda
         180000      360.00000        0.00000

   Energies (kJ/mol)
            U-B    Proper Dih.  Improper Dih.      CMAP Dih.          LJ-14
    5.01938e+04    2.98005e+04    3.12308e+03   -7.44680e+03    1.97367e+04
     Coulomb-14        LJ (SR)  Disper. corr.   Coulomb (SR)   Coul. recip.
    2.02109e+05    4.02954e+05   -3.12995e+04   -3.70869e+06    2.20544e+04
      Potential    Kinetic En.   Total Energy    Temperature Pres. DC (bar)
   -3.01747e+06    6.08815e+05   -2.40865e+06    3.09700e+02   -2.17744e+02
 Pressure (bar)   Constr. rmsd
   -1.15302e+01    3.22109e-05

DD  step 189999 load imb.: force 13.4%

           Step           Time         Lambda
         190000      380.00000        0.00000

   Energies (kJ/mol)
            U-B    Proper Dih.  Improper Dih.      CMAP Dih.          LJ-14
    5.07811e+04    2.99541e+04    2.98628e+03   -7.39091e+03    1.97456e+04
     Coulomb-14        LJ (SR)  Disper. corr.   Coulomb (SR)   Coul. recip.
    2.01761e+05    4.03922e+05   -3.13225e+04   -3.71005e+06    2.19542e+04
      Potential    Kinetic En.   Total Energy    Temperature Pres. DC (bar)
   -3.01766e+06    6.10133e+05   -2.40753e+06    3.10370e+02   -2.18064e+02
 Pressure (bar)   Constr. rmsd
   -2.96181e+01    3.28160e-05

If you want to see the full log file, please give me an email address that I could send it to.
Thank you.
Yunlong

________________________________________
发件人: gromacs.org_gmx-users-bounces at maillist.sys.kth.se <gromacs.org_gmx-users-bounces at maillist.sys.kth.se> 代表 Mark Abraham <mark.j.abraham at gmail.com>
发送时间: 2014年7月18日 23:52
收件人: Discussion list for GROMACS users
主题: Re: [gmx-users] Can't allocate memory problem

Hi,

That's highly unusual, and suggests you are doing something highly unusual,
like trying to run on huge numbers of threads, or very large numbers of
bonded interactions. How are you setting up to call mdrun, and what is in
your tpr?

Mark
On Jul 17, 2014 10:13 PM, "Yunlong Liu" <yliu120 at jhmi.edu> wrote:

> Hi,
>
>
> I am currently experiencing a "Can't allocate memory" problem on Gromacs
> 4.6.5 with GPU acceleration.
>
> Actually, I am running my simulations on Stampede/TACC supercomputers with
> their GPU queue. My first experience is when the simulation length longer
> than 10 ns, the system starts to throw out the "Can't allocate memory"
> problem as follows:
>
>
> Fatal error:
> Not enough memory. Failed to realloc 1403808 bytes for f_t->f,
> f_t->f=0xa912a010
> (called from file
> /admin/build/admin/rpms/stampede/BUILD/gromacs-4.6.5/src/gmxlib/bondfree.c,
> line 3840)
> For more information and tips for troubleshooting, please check the GROMACS
> website at http://www.gromacs.org/Documentation/Errors
> -------------------------------------------------------
>
> "These Gromacs Guys Really Rock" (P.J. Meulenhoff)
> : Cannot allocate memory
> Error on node 0, will try to stop all the nodes
> Halting parallel program mdrun_mpi_gpu on CPU 0 out of 4
>
> -------------------------------------------------------
> Program mdrun_mpi_gpu, VERSION 4.6.5
> Source code file:
> /admin/build/admin/rpms/stampede/BUILD/gromacs-4.6.5/src/gmxlib/smalloc.c,
> line: 241
>
> Fatal error:
> Not enough memory. Failed to realloc 1403808 bytes for f_t->f,
> f_t->f=0xaa516e90
> (called from file
> /admin/build/admin/rpms/stampede/BUILD/gromacs-4.6.5/src/gmxlib/bondfree.c,
> line 3840)
> For more information and tips for troubleshooting, please check the GROMACS
> website at http://www.gromacs.org/Documentation/Errors
> -------------------------------------------------------
>
> Recently, this error occurs even I run a short NVT equilibrium. This
> problem also exists when I use Gromacs 5.0 with GPU acceleration. I looked
> up the Gromacs errors website to check the reasons for this. But it seems
> that none of those reasons will fit in this situation. I use a very good
> computer, the Stampede and I run short simulations. And I know gromacs use
> nanometers as unit. I tried all the solutions that I can figure out but the
> problem becomes more severe.
>
> Is there anybody that has an idea on solving this issue?
>
> Thank you.
>
> Yunlong
>
>
>
>
>
>
>
>
> Davis Yunlong Liu
>
> BCMB - Second Year PhD Candidate
>
> School of Medicine
>
> The Johns Hopkins University
>
> E-mail: yliu120 at jhmi.edu<mailto:yliu120 at jhmi.edu>
> --
> Gromacs Users mailing list
>
> * Please search the archive at
> http://www.gromacs.org/Support/Mailing_Lists/GMX-Users_List before
> posting!
>
> * Can't post? Read http://www.gromacs.org/Support/Mailing_Lists
>
> * For (un)subscribe requests visit
> https://maillist.sys.kth.se/mailman/listinfo/gromacs.org_gmx-users or
> send a mail to gmx-users-request at gromacs.org.
>
--
Gromacs Users mailing list

* Please search the archive at http://www.gromacs.org/Support/Mailing_Lists/GMX-Users_List before posting!

* Can't post? Read http://www.gromacs.org/Support/Mailing_Lists

* For (un)subscribe requests visit
https://maillist.sys.kth.se/mailman/listinfo/gromacs.org_gmx-users or send a mail to gmx-users-request at gromacs.org.


More information about the gromacs.org_gmx-users mailing list