[gmx-users] Periodic Molecule's Free Energy Calculation Error
Jason Zhu
jasonzhu925 at gmail.com
Wed Jul 12 04:39:21 CEST 2017
Hello Gromacs Community,
I am trying to calculate the solvation free energy of a hBN sheet following
Justin Lemkul and Alchemistry's tutorials.
Since the hBN sheet is infinitely large, I turned the periodic molecules
flag on.
This runs all fine on one core, but when I try to run NVT in parallel (e.g.
4 ranks), the job would throw the following error:
A list of missing interactions:
LJC Pairs NB of 890400 missing 338688
-------------------------------------------------------
Program gmx mdrun, VERSION 5.1.4
Source code file:
/gpfs/runtime/opt/gromacs/5.1.4/src/gromacs-5.1.4/src/gromacs/domdec/domdec_topology.cpp,
line: 242
Software inconsistency error:
Some interactions seem to be assigned multiple times
For more information and tips for troubleshooting, please check the GROMACS
website at http://www.gromacs.org/Documentation/Errors
-------------------------------------------------------
Halting parallel program gmx mdrun on rank 1 out of 4
In: PMI_Abort(1, application called MPI_Abort(MPI_COMM_WORLD, 1) - process
1)
-------------------------------------------------------
Program gmx mdrun, VERSION 5.1.4
Source code file:
/gpfs/runtime/opt/gromacs/5.1.4/src/gromacs-5.1.4/src/gromacs/domdec/domdec_topology.cpp,
line: 242
Software inconsistency error:
Some interactions seem to be assigned multiple times
For more information and tips for troubleshooting, please check the GROMACS
website at http://www.gromacs.org/Documentation/Errors
-------------------------------------------------------
It seems like a domain decomposition error. My first thought was that the
system "explode".
However, when I check my topology and pbc condition carefully, there is no
sign of anything wrong.
I also tried NPT & PROD MD. The same error when I ran on multiple MPI
threads.
My question is: why the system could run fine on one MPI, but not if I
increased the number of MPI threads?
Any help on this issue will be really appreciated.
Here below is my .mdp file:
; RUN CONTROL—NVT
;——————————————————————————
define = -DPOSRES_HBN
integrator = sd ; stochastic leap-frog integrator
nsteps = 5000 ; 2 * 5,000 fs = 10 ps
dt = 0.002 ; 2 fs
comm-mode = Linear ; remove center of mass translation
nstcomm = 100 ; frequency for center of mass motion removal
;——————————————————————————
; OUTPUT CONTROL
;——————————————————————————
nstxout = 0 ; don't save coordinates to .trr
nstvout = 0 ; don't save velocities to .trr
nstfout = 0 ; don't save forces to .trr
nstxout-compressed = 5000 ; xtc compressed trajectory output
every 5000 steps
compressed-x-precision = 1000 ; precision with which to write to the
compressed trajectory file
nstlog = 5000 ; update log file every 10 ps
nstenergy = 5000 ; save energies every 10 ps
nstcalcenergy = 100 ; calculate energies every 100 steps
;——————————————————————————
; BONDS
;——————————————————————————
constraint_algorithm = lincs ; holonomic constraints
constraints = all-bonds ; hydrogens only are constrained
lincs_iter = 1 ; accuracy of LINCS (1 is default)
lincs_order = 4 ; also related to accuracy (4 is
default)
lincs-warnangle = 30 ; maximum angle that a bond can rotate
before LINCS will complain (30 is default)
continuation = no ; formerly known as
'unconstrained-start' - useful for exact continuations and reruns
;——————————————————————————
; NEIGHBOR SEARCHING
;——————————————————————————
cutoff-scheme = Verlet
ns-type = grid ; search neighboring grid cells
nstlist = 10 ; 20 fs (default is 10)
rlist = 1.2 ; short-range neighborlist cutoff (in nm)
pbc = xyz ; 3D PBC
; PBC: grp is infinite
periodic-molecules = yes
;——————————————————————————
; ELECTROSTATICS
;——————————————————————————
coulombtype = PME ; Particle Mesh Ewald for long-range
electrostatics
rcoulomb = 1.2 ; short-range electrostatic cutoff (in nm)
ewald_geometry = 3d ; Ewald sum is performed in all three dimensions
pme-order = 4 ; interpolation order for PME (default is 4)
fourierspacing = 0.16 ; grid spacing for FFT
ewald-rtol = 1e-6 ; relative strength of the Ewald-shifted direct
potential at rcoulomb
;——————————————————————————
; VDW
;——————————————————————————
vdw-type = PME
rvdw = 1.2
vdw-modifier = Potential-Shift
ewald-rtol-lj = 1e-3
lj-pme-comb-rule = Geometric
DispCorr = EnerPres
;——————————————————————————
; TEMPERATURE & PRESSURE COUPL
;——————————————————————————
tc_grps = System
tau_t = 0.1
ref_t = 300
pcoupl = no
;——————————————————————————
; VELOCITY GENERATION
;——————————————————————————
gen_vel = yes ; Velocity generation is on (if gen_vel is 'yes',
continuation should be 'no')
gen_seed = -1 ; Use random seed
gen_temp = 300
;——————————————————————————
; FREE ENERGY CALCULATIONS
;——————————————————————————
free-energy = yes
couple-moltype = BNT
couple-lambda0 = vdw-q
couple-lambda1 = none
couple-intramol = no
separate-dhdl-file = yes
sc-alpha = 0.5
sc-power = 1
sc-sigma = 0.3
init-lambda-state = 0
coul-lambdas = 0.0 0.25 0.5 0.75 1.0 1.00 1.0 1.0 1.0 1.0 1.0
1.0 1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.0
vdw-lambdas = 0.0 0.00 0.0 0.00 0.0 0.05 0.1 0.2 0.3 0.4 0.5
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1.0
nstdhdl = 100
calc-lambda-neighbors = -1
Best,
Xuliang
More information about the gromacs.org_gmx-users
mailing list