[gmx-users] destruction of the structure of a molecule in water after energy minimization

Justin Lemkul jalemkul at vt.edu
Wed May 31 02:11:09 CEST 2017



On 5/30/17 2:27 AM, Saeed Nasiri wrote:
> Dear all
> 
> I created the topology and itp files for a molecule manually (the
> parameters are not exist in the usual force fields) and build a box of a
> molecule and 857 water molecules. The structure of the molecule in water
> box is OK. Then the energy minimization step was done by the following
> files. After the successful termination, the structure of the molecule has
> been destroyed and the atoms of the molecule are spread in the box. In the
> following the employed files and the structure of the molecule (in gro
> format) before and after minimization (without water molecule) are
> presented.
>   Any help will highly appreciated.
> 

The problem likely lies in the topology of this molecule.  If it falls apart in 
vacuo, that's the issue and you need to revisit your parametrization.

-Justin

> ####################### before minimization ###############################
>      1BM    CW    1   1.222   1.373   1.397
>      1BM    CW    2   1.349   1.331   1.419
>      1BM    CR    3   1.308   1.498   1.557
>      1BM   HCW    4   1.148   1.339   1.327
>      1BM   HCW    5   1.408   1.254   1.371
>      1BM   HCR    6   1.318   1.570   1.636
>      1BM    NA    7   1.196   1.475   1.486
>      1BM    NA    8   1.400   1.408   1.521
>      1BM    C1    9   1.540   1.411   1.566
>      1BM    H1   10   1.571   1.308   1.584
>      1BM    H1   11   1.541   1.464   1.662
>      1BM    C2   12   1.631   1.482   1.466
>      1BM    HC   13   1.588   1.580   1.446
>      1BM    HC   14   1.630   1.426   1.372
>      1BM    CS   15   1.774   1.494   1.518
>      1BM    HC   16   1.814   1.395   1.542
>      1BM    HC   17   1.774   1.551   1.611
>      1BM    CT   18   1.867   1.563   1.418
>      1BM    HC   19   1.831   1.663   1.394
>      1BM    HC   20   1.969   1.572   1.458
>      1BM    HC   21   1.873   1.507   1.324
>      1BM    C1   22   1.082   1.566   1.484
>      1BM    H1   23   1.032   1.567   1.581
>      1BM    H1   24   1.011   1.532   1.409
>      1BM    H1   25   1.121   1.665   1.461
>      2Cl      Cl   26   2.283   1.962   0.221
> 
> #################### after minimization ###################################
>      1BM    CW    1   1.030   1.807   0.330
>      1BM    CW    2   1.253   0.613   1.483
>      1BM    CR    3   0.962   1.561   1.355
>      1BM   HCW    4   0.754   0.906   0.667
>      1BM   HCW    5   1.875   0.398   0.729
>      1BM   HCR    6   0.982   2.417   2.358
>      1BM    NA    7   0.291   0.861   1.603
>      1BM    NA    8   0.845   0.979   2.444
>      1BM    C1    9   1.834   0.830   2.413
>      1BM    H1   10   1.844   0.003   1.938
>      1BM    H1   11   1.443   1.743   2.290
>      1BM    C2   12   1.917   1.355   1.566
>      1BM    HC   13   1.404   2.327   1.676
>      1BM    HC   14   1.558   1.096   0.699
>      1BM    CS   15   2.661   1.364   2.237
>      1BM    HC   16   2.317   0.518   1.479
>      1BM    HC   17   2.099   2.175   2.002
>      1BM    CT   18   2.036   1.892   0.626
>      1BM    HC   19   2.109   2.565   1.277
>      1BM    HC   20   2.648   1.892   1.400
>      1BM    HC   21   2.494   1.027   0.829
>      1BM    C1   22   0.417   2.454   1.333
>      1BM    H1   23   0.484   1.849   2.126
>      1BM    H1   24   0.182   1.535   0.847
>      1BM    H1   25   1.280   2.539   0.925
>      2Cl      Cl   26   2.580   2.241   2.823
> 
> ################# minimum.mdp ############################
> ; minim.mdp - used as input into grompp to generate em.tpr
> 
> integrator    = steep        ; Algorithm (steep = steepest descent
> minimization)
> emtol        = 10.0      ; Stop minimization when the maximum force <
> 1000.0 kJ/mol/nm
> emstep          = 0.01          ; Energy step size
> nsteps        = 500000      ; Maximum number of (minimization) steps to
> perform
> define         = -DFLEXIBLE
> 
> ; Parameters describing how to find the neighbors of each atom and how to
> calculate the interactions
> nstlist               = 1            ; Frequency to update the neighbor
> list and long range forces
> cutoff-scheme       = Verlet
> ns_type                = grid        ; Method to determine neighbor list
> (simple, grid)
> coulombtype            = PME        ; Treatment of long range electrostatic
> interactions
> rcoulomb            = 1.0        ; Short-range electrostatic cut-off
> rvdw                = 1.0        ; Short-range Van der Waals cut-off
> pbc                = xyz         ; Periodic Boundary Conditions (yes/no)
> 
> ########################## topol.top
> ########################################
> 
> #include "oplsaa.ff/forcefield.itp"
> 
> 
> #include "ff_BM.itp"
> #include "BM.itp"
> #include "Cl.itp"
> 
> ; Include water topology
> #include "oplsaa.ff/tip3p.itp"
> 
> ; Include Position restraint file
> #ifdef POSRES
> #include "posre.itp"
> #endif
> 
> #ifdef POSRES_WATER
> ; Position restraint for each water oxygen
> [ position_restraints ]
> ;  i funct       fcx        fcy        fcz
>     1    1       1000       1000       1000
> #endif
> 
> [system]
> BM Cl
> 
> [molecules]
> BM        1
> Cl          1
> SOL               857
> 

-- 
==================================================

Justin A. Lemkul, Ph.D.
Ruth L. Kirschstein NRSA Postdoctoral Fellow

Department of Pharmaceutical Sciences
School of Pharmacy
Health Sciences Facility II, Room 629
University of Maryland, Baltimore
20 Penn St.
Baltimore, MD 21201

jalemkul at outerbanks.umaryland.edu | (410) 706-7441
http://mackerell.umaryland.edu/~jalemkul

==================================================


More information about the gromacs.org_gmx-users mailing list