[gmx-users] Replica exchange probabilities beyond version 2016

Pritam Ganguly pganguly at chem.ucsb.edu
Tue Apr 14 02:00:41 CEST 2020


Hello,

I have noticed that the average exchange probability for a replica 
exchange run increases significantly if I use Gromacs versions 2018, as 
compared to versions 2016 or earlier. I have tested that by simulating 
the same system with versions 2016.4 and 2018.3 and the average 
probabilities I find are:

Version 2016.4:

Replica exchange statistics
Repl  1666 attempts, 833 odd, 833 even
Repl  average probabilities:
Repl     0    1    2    3    4    5    6    7    8    9   10 11 12   
13   14   15   16   17   18   19   20   21   22   23 24 25   26   27   
28   29   30   31   32   33   34   35   36 37 38   39   40   41   42   
43   44   45   46   47   48   49 50 51   52   53   54   55   56   57   
58   59   60   61   62 63
Repl      .29  .33  .29  .30  .28  .30  .30  .29  .29  .29  .30 .26  
.29  .30  .28  .29  .26  .26  .29  .28  .26  .27  .27  .27 .27  .28  
.26  .27  .26  .25  .27  .25  .26  .27  .25  .24  .25 .26  .27  .25  
.27  .26  .26  .26  .25  .26  .26  .24  .25  .27 .26  .27  .26  .25  
.27  .27  .28  .26  .27  .26  .27  .27  .28


Version 2018.3:

Replica exchange statistics
Repl  1666 attempts, 833 odd, 833 even
Repl  average probabilities:
Repl     0    1    2    3    4    5    6    7    8    9   10 11 12   
13   14   15   16   17   18   19   20   21   22   23 24 25   26   27   
28   29   30   31   32   33   34   35   36 37 38   39   40   41   42   
43   44   45   46   47   48   49 50 51   52   53   54   55   56   57   
58   59   60   61   62 63
Repl      .39  .39  .37  .42  .38  .38  .39  .36  .36  .38  .40 .39  
.40  .39  .37  .35  .40  .39  .35  .38  .40  .35  .38  .35 .36  .35  
.36  .36  .38  .36  .37  .36  .35  .36  .36  .37  .35 .35  .35  .37  
.37  .35  .37  .36  .37  .34  .36  .38  .38  .38 .35  .37  .36  .39  
.36  .40  .38  .38  .40  .36  .37  .36  .33

These are test runs for 5 ns with exchange frequencies of 3 ps. I have 
used the same input parameters for both of these runs (mdp is attached). 
I actually observed this with many other systems and I was looking for 
any relevant gromacs release note for versions 2018 or beyond related to 
the replica exchange algorithm or the way the energies are calculated, 
but I could not figure it out.

Regards,

Pritam

-- 
Pritam Ganguly
Department of Chemistry and Biochemistry
University of California at Santa Barbara
Santa Barbara, CA, USA 93106

Office: PSBN 3606
Phone: +1-805-893-2767
http://people.chem.ucsb.edu/ganguly/pritam

-------------- next part --------------
; VARIOUS PREPROCESSING OPTIONS
; Preprocessor information: use cpp syntax.
; e.g.: -I/home/joe/doe -I/home/mary/roe
include                  = 
; e.g.: -DPOSRES -DFLEXIBLE (note these variable names are case sensitive)
define                   = 

; RUN CONTROL PARAMETERS
integrator               = md
; Start time and timestep in ps
tinit                    = 0
dt                       = 0.002
nsteps                   = 2500000
; For exact run continuation or redoing part of a run
init-step                = 0
; Part index is updated automatically on checkpointing (keeps files separate)
simulation-part          = 1
; mode for center of mass motion removal
comm-mode                = Linear
; number of steps for center of mass motion removal
nstcomm                  = 100
; group(s) for center of mass motion removal
comm_grps                = system

; LANGEVIN DYNAMICS OPTIONS
; Friction coefficient (amu/ps) and random seed
bd-fric                  = 0
ld-seed                  = -1

; ENERGY MINIMIZATION OPTIONS
; Force tolerance and initial step-size
emtol                    = 10
emstep                   = 0.01
; Max number of iterations in relax-shells
niter                    = 20
; Step size (ps^2) for minimization of flexible constraints
fcstep                   = 0
; Frequency of steepest descents steps when doing CG
nstcgsteep               = 1000
nbfgscorr                = 10

; TEST PARTICLE INSERTION OPTIONS
rtpi                     = 0.05

; OUTPUT CONTROL OPTIONS
; Output frequency for coords (x), velocities (v) and forces (f)
nstxout                  = 0
nstvout                  = 0
nstfout                  = 0
; Output frequency for energies to log file and energy file
nstlog                   = 100000
nstcalcenergy            = 100
nstenergy                = 10000
; Output frequency and precision for .xtc file
nstxout-compressed       = 100000
compressed-x-precision   = 1000
; This selects the subset of atoms for the compressed
; trajectory file. You can select multiple groups. By
; default, all atoms will be written.
compressed-x-grps        = System
; Selection of energy groups
energygrps               = System

; NEIGHBORSEARCHING PARAMETERS
; cut-off scheme (Verlet: particle based cut-offs, group: using charge groups)
cutoff-scheme            = Verlet
; nblist update frequency
nstlist                  = 10
; ns algorithm (simple or grid)
ns_type                  = grid
; Periodic boundary conditions: xyz, no, xy
pbc                      = xyz
periodic-molecules       = no
; Allowed energy error due to the Verlet buffer in kJ/mol/ps per atom,
; a value of -1 means: use rlist
verlet-buffer-tolerance  = 0.005
; nblist cut-off        
rlist                    = 1.2
; long-range cut-off for switched potentials

; OPTIONS FOR ELECTROSTATICS AND VDW
; Method for doing electrostatics
coulombtype              = PME
coulomb-modifier         = Potential-shift-Verlet
rcoulomb-switch          = 0
rcoulomb                 = 1.2
; Relative dielectric constant for the medium and the reaction field
epsilon-r                = 1
epsilon-rf               = 0
; Method for doing Van der Waals
vdwtype                  = cut-off
vdw-modifier             = Potential-shift-Verlet
; cut-off lengths       
rvdw-switch              = 0
rvdw                     = 1.2
; Apply long range dispersion corrections for Energy and Pressure
DispCorr                 = enerPres
; Extension of the potential lookup tables beyond the cut-off
table-extension          = 1
; Separate tables between energy group pairs
energygrp-table          = 
; Spacing for the PME/PPPM FFT grid
fourierspacing           = 0.12
; FFT grid size, when a value is 0 fourierspacing will be used
fourier-nx               = 0
fourier-ny               = 0
fourier-nz               = 0
; EWALD/PME/PPPM parameters
pme_order                = 4
ewald-rtol               = 1e-05
ewald-rtol-lj            = 0.001
lj-pme-comb-rule         = Geometric
ewald-geometry           = 3d
epsilon-surface          = 0

; IMPLICIT SOLVENT ALGORITHM
implicit-solvent         = No

; GENERALIZED BORN ELECTROSTATICS
; Algorithm for calculating Born radii
gb-algorithm             = Still
; Frequency of calculating the Born radii inside rlist
nstgbradii               = 1
; Cutoff for Born radii calculation; the contribution from atoms
; between rlist and rgbradii is updated every nstlist steps
rgbradii                 = 1
; Dielectric coefficient of the implicit solvent
gb-epsilon-solvent       = 80
; Salt concentration in M for Generalized Born models
gb-saltconc              = 0
; Scaling factors used in the OBC GB model. Default values are OBC(II)
gb-obc-alpha             = 1
gb-obc-beta              = 0.8
gb-obc-gamma             = 4.85
gb-dielectric-offset     = 0.009
sa-algorithm             = Ace-approximation
; Surface tension (kJ/mol/nm^2) for the SA (nonpolar surface) part of GBSA
; The value -1 will set default value for Still/HCT/OBC GB-models.
sa-surface-tension       = -1

; OPTIONS FOR WEAK COUPLING ALGORITHMS
; Temperature coupling  
tcoupl                   = nose-hoover
nsttcouple               = -1
nh-chain-length          = 10
print-nose-hoover-chain-variables = no
; Groups to couple separately
tc-grps                  = System
; Time constant (ps) and reference temperature (K)
tau_t                    = 0.5
ref_t                    = 300
; pressure coupling     
Pcoupl                   = no
pcoupltype               = Isotropic
nstpcouple               = -1
; Time constant (ps), compressibility (1/bar) and reference P (bar)
tau_p                    = 1.0
compressibility          = 4.5e-5
ref_p                    = 1.0
; Scaling of reference coordinates, No, All or COM
refcoord-scaling         = No

; OPTIONS FOR QMMM calculations
QMMM                     = no
; Groups treated Quantum Mechanically
QMMM-grps                = 
; QM method             
QMmethod                 = 
; QMMM scheme           
QMMMscheme               = normal
; QM basisset           
QMbasis                  = 
; QM charge             
QMcharge                 = 
; QM multiplicity       
QMmult                   = 
; Surface Hopping       
SH                       = 
; CAS space options     
CASorbitals              = 
CASelectrons             = 
SAon                     = 
SAoff                    = 
SAsteps                  = 
; Scale factor for MM charges
MMChargeScaleFactor      = 1

; SIMULATED ANNEALING  
; Type of annealing for each temperature group (no/single/periodic)
annealing                = 
; Number of time points to use for specifying annealing in each group
annealing-npoints        = 
; List of times at the annealing points for each group
annealing-time           = 
; Temp. at each annealing point, for each group.
annealing-temp           = 

; GENERATE VELOCITIES FOR STARTUP RUN
gen_vel                  = no
gen_temp                 = 300
gen_seed                 = 182756

; OPTIONS FOR BONDS    
constraints              = all-bonds
; Type of constraint algorithm
constraint-algorithm     = Lincs
; Do not constrain the start configuration
continuation             = no
; Use successive overrelaxation to reduce the number of shake iterations
Shake-SOR                = no
; Relative tolerance of shake
shake-tol                = 0.0001
; Highest order in the expansion of the constraint coupling matrix
lincs-order              = 4
; Number of iterations in the final step of LINCS. 1 is fine for
; normal simulations, but use 2 to conserve energy in NVE runs.
; For energy minimization with constraints it should be 4 to 8.
lincs-iter               = 1
; Lincs will write a warning to the stderr if in one step a bond
; rotates over more degrees than
lincs-warnangle          = 30
; Convert harmonic bonds to morse potentials
morse                    = no

; ENERGY GROUP EXCLUSIONS
; Pairs of energy groups for which all non-bonded interactions are excluded
energygrp-excl           = 

; WALLS                
; Number of walls, type, atom types, densities and box-z scale factor for Ewald
nwall                    = 0
wall-type                = 9-3
wall-r-linpot            = -1
wall-atomtype            = 
wall-density             = 
wall-ewald-zfac          = 3

; COM PULLING          
pull                     = no

; AWH biasing          
awh                      = no

; ENFORCED ROTATION    
; Enforced rotation: No or Yes
rotation                 = no

; Group to display and/or manipulate in interactive MD session
IMD-group                = 

; NMR refinement stuff 
; Distance restraints type: No, Simple or Ensemble
disre                    = No
; Force weighting of pairs in one distance restraint: Conservative or Equal
disre-weighting          = Conservative
; Use sqrt of the time averaged times the instantaneous violation
disre-mixed              = no
disre-fc                 = 1000
disre-tau                = 0
; Output frequency for pair distances to energy file
nstdisreout              = 100
; Orientation restraints: No or Yes
orire                    = no
; Orientation restraints force constant and tau for time averaging
orire-fc                 = 0
orire-tau                = 0
orire-fitgrp             = 
; Output frequency for trace(SD) and S to energy file
nstorireout              = 100

; Free energy variables
free-energy              = no
couple-moltype           = 
couple-lambda0           = vdw-q
couple-lambda1           = vdw-q
couple-intramol          = no
init-lambda              = -1
init-lambda-state        = -1
delta-lambda             = 0
nstdhdl                  = 50
fep-lambdas              = 
mass-lambdas             = 
coul-lambdas             = 
vdw-lambdas              = 
bonded-lambdas           = 
restraint-lambdas        = 
temperature-lambdas      = 
calc-lambda-neighbors    = 1
init-lambda-weights      = 
dhdl-print-energy        = no
sc-alpha                 = 0
sc-power                 = 1
sc-r-power               = 6
sc-sigma                 = 0.3
sc-coul                  = no
separate-dhdl-file       = yes
dhdl-derivatives         = yes
dh_hist_size             = 0
dh_hist_spacing          = 0.1

; Non-equilibrium MD stuff
acc-grps                 = 
accelerate               = 
freezegrps               = 
freezedim                = 
cos-acceleration         = 0
deform                   = 

; simulated tempering variables
simulated-tempering      = no
simulated-tempering-scaling = geometric
sim-temp-low             = 300
sim-temp-high            = 300

; Ion/water position swapping for computational electrophysiology setups
; Swap positions along direction: no, X, Y, Z
swapcoords               = no
adress                   = no

; User defined thingies
user1-grps               = 
user2-grps               = 
userint1                 = 0
userint2                 = 0
userint3                 = 0
userint4                 = 0
userreal1                = 0
userreal2                = 0
userreal3                = 0
userreal4                = 0
; Electric fields
; Format for electric-field-x, etc. is: four real variables:
; amplitude (V/nm), frequency omega (1/ps), time for the pulse peak (ps),
; and sigma (ps) width of the pulse. Omega = 0 means static field,
; sigma = 0 means no pulse, leaving the field to be a cosine function.
electric-field-x         = 0 0 0 0
electric-field-y         = 0 0 0 0
electric-field-z         = 0 0 0 0


More information about the gromacs.org_gmx-users mailing list