[gmx-users] Nonrepeatable results for gromacs 4.0.5

Erik Lindahl lindahl at cbr.su.se
Mon Jun 8 08:35:01 CEST 2009


Hi,

For the record there is also the -reprod (reproducibility) that also  
turns off the dynamic FFTW plan optimization. With these options  
enabled you will lose a bit of performance, but should get binary  
identical runs even in parallel (as long as you use the same number of  
CPUs).

Cheers,

Erik


On Jun 7, 2009, at 9:20 AM, David van der Spoel wrote:

> Jim Kress wrote:
>> I've been doing multiple runs using gromacs v 4.0.5 mdrun and a  
>> constant
>> topol.tpr input file.  Unfortunately, the results that I get in my  
>> md.log
>> differ from run to run.
>
> This is due to dynamic load balancing. Due to fluctuations in the  
> CPU usage (e.g. due to operating system) your load will vary on each  
> CPU and gromacs will try to balance it. Hence you get numerical  
> differences because in a computer (a+b)+c != a+(b+c), and ultimately  
> the trajectories will diverge.
>
> If you turn off dlb this should not happen. Please try it and report  
> if you see the same effect without.
>
>> For example, Run 1
>> Started mdrun on node 0 Fri May 22 22:53:51 2009
>>           Step           Time         Lambda
>>              0        0.00000        0.00000
>>   Energies (kJ/mol)
>>       G96Angle    Proper Dih.  Improper Dih.          LJ-14      
>> Coulomb-14
>>    1.95406e+02    1.04746e+02    4.97704e+01    4.13260e+01     
>> 1.40158e+03
>>        LJ (SR)   Coulomb (SR)      Potential    Kinetic En.   Total  
>> Energy
>>    2.60139e+03   -2.64656e+04   -2.20714e+04    4.03780e+03    
>> -1.80336e+04
>>    Temperature Pressure (bar)  Cons. rmsd ()
>>    3.03142e+02   -8.46977e+02    1.92470e-05
>> DD  step 9 load imb.: force 29.9%
>> At step 10 the performance loss due to force load imbalance is 8.6 %
>> NOTE: Turning on dynamic load balancing
>> DD  step 99  vol min/aver 0.731  load imb.: force  6.9%
>>           Step           Time         Lambda
>>            100        0.20000        0.00000
>>   Energies (kJ/mol)
>>       G96Angle    Proper Dih.  Improper Dih.          LJ-14      
>> Coulomb-14
>>    2.05310e+02    1.30129e+02    5.63474e+01    1.81814e+01     
>> 1.44270e+03
>>        LJ (SR)   Coulomb (SR)      Potential    Kinetic En.   Total  
>> Energy
>>    2.69491e+03   -2.69624e+04   -2.24148e+04    4.19456e+03    
>> -1.82203e+04
>>    Temperature Pressure (bar)  Cons. rmsd ()
>>    3.14910e+02   -5.19031e+02    1.76248e-05
>> DD  load balancing is limited by minimum cell size in dimension Y
>> DD  step 199  vol min/aver 0.766! load imb.: force 10.7%
>>           Step           Time         Lambda
>>            200        0.40000        0.00000
>>   Energies (kJ/mol)
>>       G96Angle    Proper Dih.  Improper Dih.          LJ-14      
>> Coulomb-14
>>    2.20550e+02    1.09068e+02    6.93319e+01    5.32511e+01     
>> 1.43458e+03
>>        LJ (SR)   Coulomb (SR)      Potential    Kinetic En.   Total  
>> Energy
>>    2.78241e+03   -2.70319e+04   -2.23627e+04    4.13455e+03    
>> -1.82281e+04
>>    Temperature Pressure (bar)  Cons. rmsd ()
>>    3.10405e+02   -5.01205e+02    1.70105e-05
>> DD  load balancing is limited by minimum cell size in dimension Y
>> DD  step 299  vol min/aver 0.750! load imb.: force  3.3%
>>           Step           Time         Lambda
>>            300        0.60000        0.00000
>>   Energies (kJ/mol)
>>       G96Angle    Proper Dih.  Improper Dih.          LJ-14      
>> Coulomb-14
>>    2.17474e+02    8.65489e+01    5.24995e+01    4.72592e+01     
>> 1.44419e+03
>>        LJ (SR)   Coulomb (SR)      Potential    Kinetic En.   Total  
>> Energy
>>    3.17643e+03   -2.72841e+04   -2.22597e+04    3.95024e+03    
>> -1.83095e+04
>>    Temperature Pressure (bar)  Cons. rmsd ()
>>    2.96568e+02    1.40098e+03    1.55861e-05
>> DD  step 399  vol min/aver 0.700  load imb.: force  5.9%
>>           Step           Time         Lambda
>>            400        0.80000        0.00000
>>   Energies (kJ/mol)
>>       G96Angle    Proper Dih.  Improper Dih.          LJ-14      
>> Coulomb-14
>>    2.43143e+02    9.93116e+01    7.16796e+01    4.63666e+01     
>> 1.46722e+03
>>        LJ (SR)   Coulomb (SR)      Potential    Kinetic En.   Total  
>> Energy
>>    2.84150e+03   -2.70065e+04   -2.22372e+04    4.05976e+03    
>> -1.81775e+04
>>    Temperature Pressure (bar)  Cons. rmsd ()
>>    3.04791e+02    2.48551e+02    1.61141e-05
>> DD  step 499  vol min/aver 0.678  load imb.: force  6.6%
>>           Step           Time         Lambda
>>            500        1.00000        0.00000
>>   Energies (kJ/mol)
>>       G96Angle    Proper Dih.  Improper Dih.          LJ-14      
>> Coulomb-14
>>    2.19638e+02    8.98359e+01    8.99946e+01    5.16612e+01     
>> 1.46338e+03
>>        LJ (SR)   Coulomb (SR)      Potential    Kinetic En.   Total  
>> Energy
>>    2.80267e+03   -2.68507e+04   -2.21335e+04    4.14195e+03    
>> -1.79916e+04
>>    Temperature Pressure (bar)  Cons. rmsd ()
>>    3.10961e+02   -1.17210e+02    1.71420e-05
>> DD  step 599  vol min/aver 0.678  load imb.: force  6.7%
>>           Step           Time         Lambda
>>            600        1.20000        0.00000
>>   Energies (kJ/mol)
>>       G96Angle    Proper Dih.  Improper Dih.          LJ-14      
>> Coulomb-14
>>    2.32938e+02    1.04322e+02    7.11343e+01    2.16046e+01     
>> 1.45770e+03
>>        LJ (SR)   Coulomb (SR)      Potential    Kinetic En.   Total  
>> Energy
>>    3.07425e+03   -2.71320e+04   -2.21700e+04    4.17285e+03    
>> -1.79972e+04
>>    Temperature Pressure (bar)  Cons. rmsd ()
>>    3.13281e+02    5.60002e+01    1.97532e-05
>> DD  step 699  vol min/aver 0.664  load imb.: force 13.1%
>> ----------------------------------------------------------------------------
>> -------------------------------------
>> Run 2
>> Step 0 is the same, but then the results start to differ more and  
>> more:
>> Started mdrun on node 0 Sat Jun  6 14:38:03 2009
>>           Step           Time         Lambda
>>              0        0.00000        0.00000
>>   Energies (kJ/mol)
>>       G96Angle    Proper Dih.  Improper Dih.          LJ-14      
>> Coulomb-14
>>    1.95406e+02    1.04746e+02    4.97704e+01    4.13260e+01     
>> 1.40158e+03
>>        LJ (SR)   Coulomb (SR)      Potential    Kinetic En.   Total  
>> Energy
>>    2.60139e+03   -2.64656e+04   -2.20714e+04    4.03780e+03    
>> -1.80336e+04
>>    Temperature Pressure (bar)  Cons. rmsd ()
>>    3.03142e+02   -8.46977e+02    1.92470e-05
>> DD  step 9 load imb.: force 32.9%
>> At step 10 the performance loss due to force load imbalance is 8.8 %
>> NOTE: Turning on dynamic load balancing
>> DD  load balancing is limited by minimum cell size in dimension Y
>> DD  step 99  vol min/aver 0.711! load imb.: force 13.3%
>>           Step           Time         Lambda
>>            100        0.20000        0.00000
>>   Energies (kJ/mol)
>>       G96Angle    Proper Dih.  Improper Dih.          LJ-14      
>> Coulomb-14
>>    2.05314e+02    1.30130e+02    5.63508e+01    1.81808e+01     
>> 1.44270e+03
>>        LJ (SR)   Coulomb (SR)      Potential    Kinetic En.   Total  
>> Energy
>>    2.69491e+03   -2.69627e+04   -2.24151e+04    4.19468e+03    
>> -1.82204e+04
>>    Temperature Pressure (bar)  Cons. rmsd ()
>>    3.14919e+02   -5.13520e+02    1.76037e-05
>> DD  load balancing is limited by minimum cell size in dimension Y Z
>> DD  step 199  vol min/aver 0.760! load imb.: force 12.7%
>>           Step           Time         Lambda
>>            200        0.40000        0.00000
>>   Energies (kJ/mol)
>>       G96Angle    Proper Dih.  Improper Dih.          LJ-14      
>> Coulomb-14
>>    2.20600e+02    1.09011e+02    6.92931e+01    5.32915e+01     
>> 1.43453e+03
>>        LJ (SR)   Coulomb (SR)      Potential    Kinetic En.   Total  
>> Energy
>>    2.78045e+03   -2.70297e+04   -2.23626e+04    4.13378e+03    
>> -1.82288e+04
>>    Temperature Pressure (bar)  Cons. rmsd ()
>>    3.10348e+02   -5.07193e+02    1.69736e-05
>> DD  load balancing is limited by minimum cell size in dimension Y
>> DD  step 299  vol min/aver 0.757! load imb.: force 12.1%
>>           Step           Time         Lambda
>>            300        0.60000        0.00000
>>   Energies (kJ/mol)
>>       G96Angle    Proper Dih.  Improper Dih.          LJ-14      
>> Coulomb-14
>>    2.18647e+02    8.76939e+01    5.26630e+01    4.67556e+01     
>> 1.44438e+03
>>        LJ (SR)   Coulomb (SR)      Potential    Kinetic En.   Total  
>> Energy
>>    3.15118e+03   -2.72121e+04   -2.22108e+04    3.91294e+03    
>> -1.82978e+04
>>    Temperature Pressure (bar)  Cons. rmsd ()
>>    2.93768e+02    1.36397e+03    1.56756e-05
>> DD  load balancing is limited by minimum cell size in dimension Y Z
>> DD  step 399  vol min/aver 0.688! load imb.: force 12.6%
>>           Step           Time         Lambda
>>            400        0.80000        0.00000
>>   Energies (kJ/mol)
>>       G96Angle    Proper Dih.  Improper Dih.          LJ-14      
>> Coulomb-14
>>    2.37290e+02    9.91231e+01    6.10010e+01    3.87031e+01     
>> 1.46621e+03
>>        LJ (SR)   Coulomb (SR)      Potential    Kinetic En.   Total  
>> Energy
>>    2.68805e+03   -2.68308e+04   -2.22404e+04    4.05083e+03    
>> -1.81896e+04
>>    Temperature Pressure (bar)  Cons. rmsd ()
>>    3.04120e+02   -2.55369e+02    1.63518e-05
>> DD  load balancing is limited by minimum cell size in dimension Z
>> DD  step 499  vol min/aver 0.677! load imb.: force 10.1%
>>           Step           Time         Lambda
>>            500        1.00000        0.00000
>>   Energies (kJ/mol)
>>       G96Angle    Proper Dih.  Improper Dih.          LJ-14      
>> Coulomb-14
>>    2.30361e+02    8.47035e+01    8.84842e+01    4.44614e+01     
>> 1.44045e+03
>>        LJ (SR)   Coulomb (SR)      Potential    Kinetic En.   Total  
>> Energy
>>    2.91452e+03   -2.70665e+04   -2.22635e+04    4.18886e+03    
>> -1.80746e+04
>>    Temperature Pressure (bar)  Cons. rmsd ()
>>    3.14483e+02    1.47268e+02    1.75008e-05
>> DD  load balancing is limited by minimum cell size in dimension Z
>> DD  step 599  vol min/aver 0.692! load imb.: force  7.7%
>>           Step           Time         Lambda
>>            600        1.20000        0.00000
>>   Energies (kJ/mol)
>>       G96Angle    Proper Dih.  Improper Dih.          LJ-14      
>> Coulomb-14
>>    2.19896e+02    9.93832e+01    6.10071e+01    2.95745e+01     
>> 1.45874e+03
>>        LJ (SR)   Coulomb (SR)      Potential    Kinetic En.   Total  
>> Energy
>>    2.81555e+03   -2.71300e+04   -2.24458e+04    4.17303e+03    
>> -1.82728e+04
>>    Temperature Pressure (bar)  Cons. rmsd ()
>>    3.13294e+02   -3.05949e+02    1.64990e-05
>> DD  load balancing is limited by minimum cell size in dimension Z
>> DD  step 699  vol min/aver 0.719! load imb.: force  4.9%
>> ----------------------------------------------------------------------------
>> --------------------
>> Any ideas why I am seeing this?
>> Here is the initial mdrun printed input info:
>>                         :-)  G  R  O  M  A  C  S  (-:
>>                   Groningen Machine for Chemical Simulation
>>                            :-)  VERSION 4.0.5  (-:
>>      Written by David van der Spoel, Erik Lindahl, Berk Hess, and  
>> others.
>>       Copyright (c) 1991-2000, University of Groningen, The  
>> Netherlands.
>>             Copyright (c) 2001-2008, The GROMACS development team,
>>            check out http://www.gromacs.org for more information.
>>         This program is free software; you can redistribute it and/or
>>          modify it under the terms of the GNU General Public License
>>         as published by the Free Software Foundation; either  
>> version 2
>>             of the License, or (at your option) any later version.
>>                              :-)  mdrun_mpi  (-:
>> ++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
>> B. Hess and C. Kutzner and D. van der Spoel and E. Lindahl GROMACS 4:
>> Algorithms for highly efficient, load-balanced, and scalable  
>> molecular
>> simulation J. Chem. Theory Comput. 4 (2008) pp. 435-447
>> -------- -------- --- Thank You --- -------- --------
>> ++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
>> D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark and  
>> H. J. C.
>> Berendsen
>> GROMACS: Fast, Flexible and Free
>> J. Comp. Chem. 26 (2005) pp. 1701-1719
>> -------- -------- --- Thank You --- -------- --------
>> ++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
>> E. Lindahl and B. Hess and D. van der Spoel GROMACS 3.0: A package  
>> for
>> molecular simulation and trajectory analysis J. Mol. Mod. 7 (2001)  
>> pp.
>> 306-317
>> -------- -------- --- Thank You --- -------- --------
>> ++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
>> H. J. C. Berendsen, D. van der Spoel and R. van Drunen
>> GROMACS: A message-passing parallel molecular dynamics  
>> implementation Comp.
>> Phys. Comm. 91 (1995) pp. 43-56
>> -------- -------- --- Thank You --- -------- --------
>> parameters of the run:
>>   integrator           = md
>>   nsteps               = 5000000
>>   init_step            = 0
>>   ns_type              = Grid
>>   nstlist              = 10
>>   ndelta               = 2
>>   nstcomm              = 1
>>   comm_mode            = Linear
>>   nstlog               = 100
>>   nstxout              = 50
>>   nstvout              = 0
>>   nstfout              = 0
>>   nstenergy            = 100
>>   nstxtcout            = 0
>>   init_t               = 0
>>   delta_t              = 0.002
>>   xtcprec              = 1000
>>   nkx                  = 0
>>   nky                  = 0
>>   nkz                  = 0
>>   pme_order            = 4
>>   ewald_rtol           = 1e-05
>>   ewald_geometry       = 0
>>   epsilon_surface      = 0
>>   optimize_fft         = FALSE
>>   ePBC                 = xyz
>>   bPeriodicMols        = FALSE
>>   bContinuation        = FALSE
>>   bShakeSOR            = FALSE
>>   etc                  = Berendsen
>>   epc                  = No
>>   epctype              = Isotropic
>>   tau_p                = 0.5
>>   ref_p (3x3):
>>      ref_p[    0]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>>      ref_p[    1]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>>      ref_p[    2]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>>   compress (3x3):
>>      compress[    0]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>>      compress[    1]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>>      compress[    2]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>>   refcoord_scaling     = No
>>   posres_com (3):
>>      posres_com[0]= 0.00000e+00
>>      posres_com[1]= 0.00000e+00
>>      posres_com[2]= 0.00000e+00
>>   posres_comB (3):
>>      posres_comB[0]= 0.00000e+00
>>      posres_comB[1]= 0.00000e+00
>>      posres_comB[2]= 0.00000e+00
>>   andersen_seed        = 815131
>>   rlist                = 1
>>   rtpi                 = 0.05
>>   coulombtype          = Cut-off
>>   rcoulomb_switch      = 0
>>   rcoulomb             = 1
>>   vdwtype              = Cut-off
>>   rvdw_switch          = 0
>>   rvdw                 = 1
>>   epsilon_r            = 1
>>   epsilon_rf           = 1
>>   tabext               = 1
>>   implicit_solvent     = No
>>   gb_algorithm         = Still
>>   gb_epsilon_solvent   = 80
>>   nstgbradii           = 1
>>   rgbradii             = 2
>>   gb_saltconc          = 0
>>   gb_obc_alpha         = 1
>>   gb_obc_beta          = 0.8
>>   gb_obc_gamma         = 4.85
>>   sa_surface_tension   = 2.092
>>   DispCorr             = No
>>   free_energy          = no
>>   init_lambda          = 0
>>   sc_alpha             = 0
>>   sc_power             = 0
>>   sc_sigma             = 0.3
>>   delta_lambda         = 0
>>   nwall                = 0
>>   wall_type            = 9-3
>>   wall_atomtype[0]     = -1
>>   wall_atomtype[1]     = -1
>>   wall_density[0]      = 0
>>   wall_density[1]      = 0
>>   wall_ewald_zfac      = 3
>>   pull                 = no
>>   disre                = No
>>   disre_weighting      = Conservative
>>   disre_mixed          = FALSE
>>   dr_fc                = 1000
>>   dr_tau               = 0
>>   nstdisreout          = 100
>>   orires_fc            = 0
>>   orires_tau           = 0
>>   nstorireout          = 100
>>   dihre-fc             = 1000
>>   em_stepsize          = 0.01
>>   em_tol               = 10
>>   niter                = 20
>>   fc_stepsize          = 0
>>   nstcgsteep           = 1000
>>   nbfgscorr            = 10
>>   ConstAlg             = Lincs
>>   shake_tol            = 0.0001
>>   lincs_order          = 4
>>   lincs_warnangle      = 30
>>   lincs_iter           = 1
>>   bd_fric              = 0
>>   ld_seed              = 1993
>>   cos_accel            = 0
>>   deform (3x3):
>>      deform[    0]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>>      deform[    1]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>>      deform[    2]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>>   userint1             = 0
>>   userint2             = 0
>>   userint3             = 0
>>   userint4             = 0
>>   userreal1            = 0
>>   userreal2            = 0
>>   userreal3            = 0
>>   userreal4            = 0
>> grpopts:
>>   nrdf:     284.733     2919.27
>>   ref_t:         300         300
>>   tau_t:         0.1         0.1
>> anneal:          No          No
>> ann_npoints:           0           0
>>   acc:	           0           0           0
>>   nfreeze:           N           N           N
>>   energygrp_flags[  0]: 0
>>   efield-x:
>>      n = 0
>>   efield-xt:
>>      n = 0
>>   efield-y:
>>      n = 0
>>   efield-yt:
>>      n = 0
>>   efield-z:
>>      n = 0
>>   efield-zt:
>>      n = 0
>>   bQMMM                = FALSE
>>   QMconstraints        = 0
>>   QMMMscheme           = 0
>>   scalefactor          = 1
>> qm_opts:
>>   ngQM                 = 0
>> Initializing Domain Decomposition on 12 nodes Dynamic load  
>> balancing: auto
>> Will sort the charge groups at every domain (re)decomposition Initial
>> maximum inter charge-group distances:
>>    two-body bonded interactions: 0.597 nm, LJ-14, atoms 5 18
>>  multi-body bonded interactions: 0.597 nm, Proper Dih., atoms 5 18  
>> Minimum
>> cell size due to bonded interactions: 0.657 nm Maximum distance for 5
>> constraints, at 120 deg. angles, all-trans: 0.820 nm Estimated  
>> maximum
>> distance required for P-LINCS: 0.820 nm This distance will limit  
>> the DD cell
>> size, you can override this with -rcon Scaling the initial minimum  
>> size with
>> 1/0.8 (option -dds) = 1.25 Optimizing the DD grid for 12 cells with a
>> minimum initial size of 1.025 nm The maximum allowed number of  
>> cells is: X 2
>> Y 3 Z 2 Domain decomposition grid 2 x 3 x 2, separate PME nodes 0  
>> Domain
>> decomposition nodeid 0, coordinates 0 0 0
>> Table routines are used for coulomb: FALSE
>> Table routines are used for vdw:     FALSE
>> Cut-off's:   NS: 1   Coulomb: 1   LJ: 1
>> System total charge: 1.000
>> Generated table with 1000 data points for 1-4 COUL.
>> Tabscale = 500 points/nm
>> Generated table with 1000 data points for 1-4 LJ6.
>> Tabscale = 500 points/nm
>> Generated table with 1000 data points for 1-4 LJ12.
>> Tabscale = 500 points/nm
>> Enabling SPC water optimization for 487 molecules.
>> Configuring nonbonded kernels...
>> Testing x86_64 SSE support... present.
>> Removing pbc first time
>> Initializing Parallel LINear Constraint Solver
>> ++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
>> B. Hess
>> P-LINCS: A Parallel Linear Constraint Solver for molecular  
>> simulation J.
>> Chem. Theory Comput. 4 (2008) pp. 116-122
>> -------- -------- --- Thank You --- -------- --------
>> The number of constraints is 144
>> There are inter charge-group constraints, will communicate selected
>> coordinates each lincs iteration
>> ++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
>> S. Miyamoto and P. A. Kollman
>> SETTLE: An Analytical Version of the SHAKE and RATTLE Algorithms  
>> for Rigid
>> Water Models J. Comp. Chem. 13 (1992) pp. 952-962
>> -------- -------- --- Thank You --- -------- --------
>> Linking all bonded interactions to atoms
>> The initial number of communication pulses is: X 1 Y 1 Z 1 The  
>> initial
>> domain decomposition cell size is: X 1.21 nm Y 1.05 nm Z 1.11 nm
>> The maximum allowed distance for charge groups involved in  
>> interactions is:
>>                 non-bonded interactions           1.000 nm
>>            two-body bonded interactions  (-rdd)   1.000 nm
>>          multi-body bonded interactions  (-rdd)   1.000 nm
>>  atoms separated by up to 5 constraints  (-rcon)  1.054 nm
>> When dynamic load balancing gets turned on, these settings will  
>> change to:
>> The maximum number of communication pulses is: X 1 Y 2 Z 1 The  
>> minimum size
>> for domain decomposition cells is 0.826 nm The requested allowed  
>> shrink of
>> DD cells (option -dds) is: 0.80 The allowed shrink of domain  
>> decomposition
>> cells is: X 0.82 Y 0.78 Z 0.90 The maximum allowed distance for  
>> charge
>> groups involved in interactions is:
>>                 non-bonded interactions           1.000 nm
>>            two-body bonded interactions  (-rdd)   1.000 nm
>>          multi-body bonded interactions  (-rdd)   0.826 nm
>>  atoms separated by up to 5 constraints  (-rcon)  0.826 nm
>> Making 3D domain decomposition grid 2 x 3 x 2, home cell index 0 0 0
>> Center of mass motion removal mode is Linear We have the following  
>> groups
>> for center of mass motion removal:
>>  0:  rest
>> ++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
>> H. J. C. Berendsen, J. P. M. Postma, A. DiNola and J. R. Haak  
>> Molecular
>> dynamics with coupling to an external bath J. Chem. Phys. 81 (1984)  
>> pp.
>> 3684-3690
>> -------- -------- --- Thank You --- -------- --------
>> There are: 1604 Atoms
>> Charge group distribution at step 0: 45 50 45 42 46 41 44 45 41 47  
>> 51 47
>> Grid: 4 x 4 x 4 cells
>> Constraining the starting coordinates (step 0)
>> Constraining the coordinates at t0-dt (step 0) RMS relative  
>> constraint
>> deviation after constraining: 2.38e-05 Initial temperature: 299.151 K
>> Which is, of course, identical between the runs.
>> Thanks for any comments/ advice.
>> Jim
>> _______________________________________________
>> gmx-users mailing list    gmx-users at gromacs.org
>> http://lists.gromacs.org/mailman/listinfo/gmx-users
>> Please search the archive at http://www.gromacs.org/search before  
>> posting!
>> Please don't post (un)subscribe requests to the list. Use the www  
>> interface or send it to gmx-users-request at gromacs.org.
>> Can't post? Read http://www.gromacs.org/mailing_lists/users.php
>
>
> -- 
> David.
> ________________________________________________________________________
> David van der Spoel, PhD, Professor of Biology
> Dept. of Cell and Molecular Biology, Uppsala University.
> Husargatan 3, Box 596,  	75124 Uppsala, Sweden
> phone:	46 18 471 4205		fax: 46 18 511 755
> spoel at xray.bmc.uu.se	spoel at gromacs.org   http://folding.bmc.uu.se
> +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
> +++
> _______________________________________________
> gmx-users mailing list    gmx-users at gromacs.org
> http://lists.gromacs.org/mailman/listinfo/gmx-users
> Please search the archive at http://www.gromacs.org/search before  
> posting!
> Please don't post (un)subscribe requests to the list. Use the www  
> interface or send it to gmx-users-request at gromacs.org.
> Can't post? Read http://www.gromacs.org/mailing_lists/users.php
>

------------
Erik Lindahl   <lindahl at cbr.su.se>  Backup: <erik.lindahl at gmail.com>
Associate Professor, Computational Structural Biology
Center for Biomembrane Research, Dept. Biochemistry & Biophysics
Stockholm University, SE-106 91 Stockholm, Sweden
Tel: +46(0)8164675  Mobile: +46(0)703844534  Fax: mail a PDF instead









More information about the gromacs.org_gmx-users mailing list