[gmx-users] Nonrepeatable results for gromacs 4.0.5

Erik Marklund erikm at xray.bmc.uu.se
Mon Jun 8 15:36:22 CEST 2009


jimkress_58 skrev:
>> If you turn off dlb this should not happen. Please try it and 
>> report if you see the same effect without.
>>     
>
> No, I do not see the same effect if I turn off dlb.  However, I am concerned
> that the magnitude of the differences between runs exceeds the expected,
> normal variability (as defined by the RMS deviations of each run), so I am
> exploring that.
>
> Also, if I turn on nosum, as suggested by mdrun, the run with dlb turned on
> diverges.  This is also a cause for concern.
>   
No, that's expected. See David's reply below. Nosum is only good for 
reducing communication, thus increasing performance.

/Erik
> Jim
>
> -----Original Message-----
> From: gmx-users-bounces at gromacs.org [mailto:gmx-users-bounces at gromacs.org]
> On Behalf Of David van der Spoel
> Sent: Sunday, June 07, 2009 3:20 AM
> To: Discussion list for GROMACS users
> Subject: Re: [gmx-users] Nonrepeatable results for gromacs 4.0.5
>
> Jim Kress wrote:
>   
>> I've been doing multiple runs using gromacs v 4.0.5 mdrun and a constant
>> topol.tpr input file.  Unfortunately, the results that I get in my md.log
>> differ from run to run.
>>     
>
> This is due to dynamic load balancing. Due to fluctuations in the CPU 
> usage (e.g. due to operating system) your load will vary on each CPU and 
> gromacs will try to balance it. Hence you get numerical differences 
> because in a computer (a+b)+c != a+(b+c), and ultimately the 
> trajectories will diverge.
>
> If you turn off dlb this should not happen. Please try it and report if 
> you see the same effect without.
>
>   
>> For example, 
>>
>> Run 1
>>
>> Started mdrun on node 0 Fri May 22 22:53:51 2009
>>
>>            Step           Time         Lambda
>>               0        0.00000        0.00000
>>
>>    Energies (kJ/mol)
>>        G96Angle    Proper Dih.  Improper Dih.          LJ-14
>>     
> Coulomb-14
>   
>>     1.95406e+02    1.04746e+02    4.97704e+01    4.13260e+01
>>     
> 1.40158e+03
>   
>>         LJ (SR)   Coulomb (SR)      Potential    Kinetic En.   Total
>>     
> Energy
>   
>>     2.60139e+03   -2.64656e+04   -2.20714e+04    4.03780e+03
>>     
> -1.80336e+04
>   
>>     Temperature Pressure (bar)  Cons. rmsd ()
>>     3.03142e+02   -8.46977e+02    1.92470e-05
>>
>> DD  step 9 load imb.: force 29.9%
>>
>> At step 10 the performance loss due to force load imbalance is 8.6 %
>>
>> NOTE: Turning on dynamic load balancing
>>
>> DD  step 99  vol min/aver 0.731  load imb.: force  6.9%
>>
>>            Step           Time         Lambda
>>             100        0.20000        0.00000
>>
>>    Energies (kJ/mol)
>>        G96Angle    Proper Dih.  Improper Dih.          LJ-14
>>     
> Coulomb-14
>   
>>     2.05310e+02    1.30129e+02    5.63474e+01    1.81814e+01
>>     
> 1.44270e+03
>   
>>         LJ (SR)   Coulomb (SR)      Potential    Kinetic En.   Total
>>     
> Energy
>   
>>     2.69491e+03   -2.69624e+04   -2.24148e+04    4.19456e+03
>>     
> -1.82203e+04
>   
>>     Temperature Pressure (bar)  Cons. rmsd ()
>>     3.14910e+02   -5.19031e+02    1.76248e-05
>>
>> DD  load balancing is limited by minimum cell size in dimension Y
>> DD  step 199  vol min/aver 0.766! load imb.: force 10.7%
>>
>>            Step           Time         Lambda
>>             200        0.40000        0.00000
>>
>>    Energies (kJ/mol)
>>        G96Angle    Proper Dih.  Improper Dih.          LJ-14
>>     
> Coulomb-14
>   
>>     2.20550e+02    1.09068e+02    6.93319e+01    5.32511e+01
>>     
> 1.43458e+03
>   
>>         LJ (SR)   Coulomb (SR)      Potential    Kinetic En.   Total
>>     
> Energy
>   
>>     2.78241e+03   -2.70319e+04   -2.23627e+04    4.13455e+03
>>     
> -1.82281e+04
>   
>>     Temperature Pressure (bar)  Cons. rmsd ()
>>     3.10405e+02   -5.01205e+02    1.70105e-05
>>
>> DD  load balancing is limited by minimum cell size in dimension Y
>> DD  step 299  vol min/aver 0.750! load imb.: force  3.3%
>>
>>            Step           Time         Lambda
>>             300        0.60000        0.00000
>>
>>    Energies (kJ/mol)
>>        G96Angle    Proper Dih.  Improper Dih.          LJ-14
>>     
> Coulomb-14
>   
>>     2.17474e+02    8.65489e+01    5.24995e+01    4.72592e+01
>>     
> 1.44419e+03
>   
>>         LJ (SR)   Coulomb (SR)      Potential    Kinetic En.   Total
>>     
> Energy
>   
>>     3.17643e+03   -2.72841e+04   -2.22597e+04    3.95024e+03
>>     
> -1.83095e+04
>   
>>     Temperature Pressure (bar)  Cons. rmsd ()
>>     2.96568e+02    1.40098e+03    1.55861e-05
>>
>> DD  step 399  vol min/aver 0.700  load imb.: force  5.9%
>>
>>            Step           Time         Lambda
>>             400        0.80000        0.00000
>>
>>    Energies (kJ/mol)
>>        G96Angle    Proper Dih.  Improper Dih.          LJ-14
>>     
> Coulomb-14
>   
>>     2.43143e+02    9.93116e+01    7.16796e+01    4.63666e+01
>>     
> 1.46722e+03
>   
>>         LJ (SR)   Coulomb (SR)      Potential    Kinetic En.   Total
>>     
> Energy
>   
>>     2.84150e+03   -2.70065e+04   -2.22372e+04    4.05976e+03
>>     
> -1.81775e+04
>   
>>     Temperature Pressure (bar)  Cons. rmsd ()
>>     3.04791e+02    2.48551e+02    1.61141e-05
>>
>> DD  step 499  vol min/aver 0.678  load imb.: force  6.6%
>>
>>            Step           Time         Lambda
>>             500        1.00000        0.00000
>>
>>    Energies (kJ/mol)
>>        G96Angle    Proper Dih.  Improper Dih.          LJ-14
>>     
> Coulomb-14
>   
>>     2.19638e+02    8.98359e+01    8.99946e+01    5.16612e+01
>>     
> 1.46338e+03
>   
>>         LJ (SR)   Coulomb (SR)      Potential    Kinetic En.   Total
>>     
> Energy
>   
>>     2.80267e+03   -2.68507e+04   -2.21335e+04    4.14195e+03
>>     
> -1.79916e+04
>   
>>     Temperature Pressure (bar)  Cons. rmsd ()
>>     3.10961e+02   -1.17210e+02    1.71420e-05
>>
>> DD  step 599  vol min/aver 0.678  load imb.: force  6.7%
>>
>>            Step           Time         Lambda
>>             600        1.20000        0.00000
>>
>>    Energies (kJ/mol)
>>        G96Angle    Proper Dih.  Improper Dih.          LJ-14
>>     
> Coulomb-14
>   
>>     2.32938e+02    1.04322e+02    7.11343e+01    2.16046e+01
>>     
> 1.45770e+03
>   
>>         LJ (SR)   Coulomb (SR)      Potential    Kinetic En.   Total
>>     
> Energy
>   
>>     3.07425e+03   -2.71320e+04   -2.21700e+04    4.17285e+03
>>     
> -1.79972e+04
>   
>>     Temperature Pressure (bar)  Cons. rmsd ()
>>     3.13281e+02    5.60002e+01    1.97532e-05
>>
>> DD  step 699  vol min/aver 0.664  load imb.: force 13.1%
>>
>>
>>     
> ----------------------------------------------------------------------------
>   
>> -------------------------------------
>>
>> Run 2
>>
>> Step 0 is the same, but then the results start to differ more and more:
>>
>> Started mdrun on node 0 Sat Jun  6 14:38:03 2009
>>
>>            Step           Time         Lambda
>>               0        0.00000        0.00000
>>
>>    Energies (kJ/mol)
>>        G96Angle    Proper Dih.  Improper Dih.          LJ-14
>>     
> Coulomb-14
>   
>>     1.95406e+02    1.04746e+02    4.97704e+01    4.13260e+01
>>     
> 1.40158e+03
>   
>>         LJ (SR)   Coulomb (SR)      Potential    Kinetic En.   Total
>>     
> Energy
>   
>>     2.60139e+03   -2.64656e+04   -2.20714e+04    4.03780e+03
>>     
> -1.80336e+04
>   
>>     Temperature Pressure (bar)  Cons. rmsd ()
>>     3.03142e+02   -8.46977e+02    1.92470e-05
>>
>> DD  step 9 load imb.: force 32.9%
>>
>> At step 10 the performance loss due to force load imbalance is 8.8 %
>>
>> NOTE: Turning on dynamic load balancing
>>
>> DD  load balancing is limited by minimum cell size in dimension Y
>> DD  step 99  vol min/aver 0.711! load imb.: force 13.3%
>>
>>            Step           Time         Lambda
>>             100        0.20000        0.00000
>>
>>    Energies (kJ/mol)
>>        G96Angle    Proper Dih.  Improper Dih.          LJ-14
>>     
> Coulomb-14
>   
>>     2.05314e+02    1.30130e+02    5.63508e+01    1.81808e+01
>>     
> 1.44270e+03
>   
>>         LJ (SR)   Coulomb (SR)      Potential    Kinetic En.   Total
>>     
> Energy
>   
>>     2.69491e+03   -2.69627e+04   -2.24151e+04    4.19468e+03
>>     
> -1.82204e+04
>   
>>     Temperature Pressure (bar)  Cons. rmsd ()
>>     3.14919e+02   -5.13520e+02    1.76037e-05
>>
>> DD  load balancing is limited by minimum cell size in dimension Y Z
>> DD  step 199  vol min/aver 0.760! load imb.: force 12.7%
>>
>>            Step           Time         Lambda
>>             200        0.40000        0.00000
>>
>>    Energies (kJ/mol)
>>        G96Angle    Proper Dih.  Improper Dih.          LJ-14
>>     
> Coulomb-14
>   
>>     2.20600e+02    1.09011e+02    6.92931e+01    5.32915e+01
>>     
> 1.43453e+03
>   
>>         LJ (SR)   Coulomb (SR)      Potential    Kinetic En.   Total
>>     
> Energy
>   
>>     2.78045e+03   -2.70297e+04   -2.23626e+04    4.13378e+03
>>     
> -1.82288e+04
>   
>>     Temperature Pressure (bar)  Cons. rmsd ()
>>     3.10348e+02   -5.07193e+02    1.69736e-05
>>
>> DD  load balancing is limited by minimum cell size in dimension Y
>> DD  step 299  vol min/aver 0.757! load imb.: force 12.1%
>>
>>            Step           Time         Lambda
>>             300        0.60000        0.00000
>>
>>    Energies (kJ/mol)
>>        G96Angle    Proper Dih.  Improper Dih.          LJ-14
>>     
> Coulomb-14
>   
>>     2.18647e+02    8.76939e+01    5.26630e+01    4.67556e+01
>>     
> 1.44438e+03
>   
>>         LJ (SR)   Coulomb (SR)      Potential    Kinetic En.   Total
>>     
> Energy
>   
>>     3.15118e+03   -2.72121e+04   -2.22108e+04    3.91294e+03
>>     
> -1.82978e+04
>   
>>     Temperature Pressure (bar)  Cons. rmsd ()
>>     2.93768e+02    1.36397e+03    1.56756e-05
>>
>> DD  load balancing is limited by minimum cell size in dimension Y Z
>> DD  step 399  vol min/aver 0.688! load imb.: force 12.6%
>>
>>            Step           Time         Lambda
>>             400        0.80000        0.00000
>>
>>    Energies (kJ/mol)
>>        G96Angle    Proper Dih.  Improper Dih.          LJ-14
>>     
> Coulomb-14
>   
>>     2.37290e+02    9.91231e+01    6.10010e+01    3.87031e+01
>>     
> 1.46621e+03
>   
>>         LJ (SR)   Coulomb (SR)      Potential    Kinetic En.   Total
>>     
> Energy
>   
>>     2.68805e+03   -2.68308e+04   -2.22404e+04    4.05083e+03
>>     
> -1.81896e+04
>   
>>     Temperature Pressure (bar)  Cons. rmsd ()
>>     3.04120e+02   -2.55369e+02    1.63518e-05
>>
>> DD  load balancing is limited by minimum cell size in dimension Z
>> DD  step 499  vol min/aver 0.677! load imb.: force 10.1%
>>
>>            Step           Time         Lambda
>>             500        1.00000        0.00000
>>
>>    Energies (kJ/mol)
>>        G96Angle    Proper Dih.  Improper Dih.          LJ-14
>>     
> Coulomb-14
>   
>>     2.30361e+02    8.47035e+01    8.84842e+01    4.44614e+01
>>     
> 1.44045e+03
>   
>>         LJ (SR)   Coulomb (SR)      Potential    Kinetic En.   Total
>>     
> Energy
>   
>>     2.91452e+03   -2.70665e+04   -2.22635e+04    4.18886e+03
>>     
> -1.80746e+04
>   
>>     Temperature Pressure (bar)  Cons. rmsd ()
>>     3.14483e+02    1.47268e+02    1.75008e-05
>>
>> DD  load balancing is limited by minimum cell size in dimension Z
>> DD  step 599  vol min/aver 0.692! load imb.: force  7.7%
>>
>>            Step           Time         Lambda
>>             600        1.20000        0.00000
>>
>>    Energies (kJ/mol)
>>        G96Angle    Proper Dih.  Improper Dih.          LJ-14
>>     
> Coulomb-14
>   
>>     2.19896e+02    9.93832e+01    6.10071e+01    2.95745e+01
>>     
> 1.45874e+03
>   
>>         LJ (SR)   Coulomb (SR)      Potential    Kinetic En.   Total
>>     
> Energy
>   
>>     2.81555e+03   -2.71300e+04   -2.24458e+04    4.17303e+03
>>     
> -1.82728e+04
>   
>>     Temperature Pressure (bar)  Cons. rmsd ()
>>     3.13294e+02   -3.05949e+02    1.64990e-05
>>
>> DD  load balancing is limited by minimum cell size in dimension Z
>> DD  step 699  vol min/aver 0.719! load imb.: force  4.9%
>>
>>
>>     
> ----------------------------------------------------------------------------
>   
>> --------------------
>>
>> Any ideas why I am seeing this?
>>
>> Here is the initial mdrun printed input info:
>>
>>
>>                          :-)  G  R  O  M  A  C  S  (-:
>>
>>                    Groningen Machine for Chemical Simulation
>>
>>                             :-)  VERSION 4.0.5  (-:
>>
>>
>>       Written by David van der Spoel, Erik Lindahl, Berk Hess, and others.
>>        Copyright (c) 1991-2000, University of Groningen, The Netherlands.
>>              Copyright (c) 2001-2008, The GROMACS development team,
>>             check out http://www.gromacs.org for more information.
>>
>>          This program is free software; you can redistribute it and/or
>>           modify it under the terms of the GNU General Public License
>>          as published by the Free Software Foundation; either version 2
>>              of the License, or (at your option) any later version.
>>
>>                               :-)  mdrun_mpi  (-:
>>
>>
>> ++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
>> B. Hess and C. Kutzner and D. van der Spoel and E. Lindahl GROMACS 4:
>> Algorithms for highly efficient, load-balanced, and scalable molecular
>> simulation J. Chem. Theory Comput. 4 (2008) pp. 435-447
>> -------- -------- --- Thank You --- -------- --------
>>
>>
>> ++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
>> D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark and H. J.
>>     
> C.
>   
>> Berendsen
>> GROMACS: Fast, Flexible and Free
>> J. Comp. Chem. 26 (2005) pp. 1701-1719
>> -------- -------- --- Thank You --- -------- --------
>>
>>
>> ++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
>> E. Lindahl and B. Hess and D. van der Spoel GROMACS 3.0: A package for
>> molecular simulation and trajectory analysis J. Mol. Mod. 7 (2001) pp.
>> 306-317
>> -------- -------- --- Thank You --- -------- --------
>>
>>
>> ++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
>> H. J. C. Berendsen, D. van der Spoel and R. van Drunen
>> GROMACS: A message-passing parallel molecular dynamics implementation
>>     
> Comp.
>   
>> Phys. Comm. 91 (1995) pp. 43-56
>> -------- -------- --- Thank You --- -------- --------
>>
>> parameters of the run:
>>    integrator           = md
>>    nsteps               = 5000000
>>    init_step            = 0
>>    ns_type              = Grid
>>    nstlist              = 10
>>    ndelta               = 2
>>    nstcomm              = 1
>>    comm_mode            = Linear
>>    nstlog               = 100
>>    nstxout              = 50
>>    nstvout              = 0
>>    nstfout              = 0
>>    nstenergy            = 100
>>    nstxtcout            = 0
>>    init_t               = 0
>>    delta_t              = 0.002
>>    xtcprec              = 1000
>>    nkx                  = 0
>>    nky                  = 0
>>    nkz                  = 0
>>    pme_order            = 4
>>    ewald_rtol           = 1e-05
>>    ewald_geometry       = 0
>>    epsilon_surface      = 0
>>    optimize_fft         = FALSE
>>    ePBC                 = xyz
>>    bPeriodicMols        = FALSE
>>    bContinuation        = FALSE
>>    bShakeSOR            = FALSE
>>    etc                  = Berendsen
>>    epc                  = No
>>    epctype              = Isotropic
>>    tau_p                = 0.5
>>    ref_p (3x3):
>>       ref_p[    0]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>>       ref_p[    1]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>>       ref_p[    2]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>>    compress (3x3):
>>       compress[    0]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>>       compress[    1]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>>       compress[    2]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>>    refcoord_scaling     = No
>>    posres_com (3):
>>       posres_com[0]= 0.00000e+00
>>       posres_com[1]= 0.00000e+00
>>       posres_com[2]= 0.00000e+00
>>    posres_comB (3):
>>       posres_comB[0]= 0.00000e+00
>>       posres_comB[1]= 0.00000e+00
>>       posres_comB[2]= 0.00000e+00
>>    andersen_seed        = 815131
>>    rlist                = 1
>>    rtpi                 = 0.05
>>    coulombtype          = Cut-off
>>    rcoulomb_switch      = 0
>>    rcoulomb             = 1
>>    vdwtype              = Cut-off
>>    rvdw_switch          = 0
>>    rvdw                 = 1
>>    epsilon_r            = 1
>>    epsilon_rf           = 1
>>    tabext               = 1
>>    implicit_solvent     = No
>>    gb_algorithm         = Still
>>    gb_epsilon_solvent   = 80
>>    nstgbradii           = 1
>>    rgbradii             = 2
>>    gb_saltconc          = 0
>>    gb_obc_alpha         = 1
>>    gb_obc_beta          = 0.8
>>    gb_obc_gamma         = 4.85
>>    sa_surface_tension   = 2.092
>>    DispCorr             = No
>>    free_energy          = no
>>    init_lambda          = 0
>>    sc_alpha             = 0
>>    sc_power             = 0
>>    sc_sigma             = 0.3
>>    delta_lambda         = 0
>>    nwall                = 0
>>    wall_type            = 9-3
>>    wall_atomtype[0]     = -1
>>    wall_atomtype[1]     = -1
>>    wall_density[0]      = 0
>>    wall_density[1]      = 0
>>    wall_ewald_zfac      = 3
>>    pull                 = no
>>    disre                = No
>>    disre_weighting      = Conservative
>>    disre_mixed          = FALSE
>>    dr_fc                = 1000
>>    dr_tau               = 0
>>    nstdisreout          = 100
>>    orires_fc            = 0
>>    orires_tau           = 0
>>    nstorireout          = 100
>>    dihre-fc             = 1000
>>    em_stepsize          = 0.01
>>    em_tol               = 10
>>    niter                = 20
>>    fc_stepsize          = 0
>>    nstcgsteep           = 1000
>>    nbfgscorr            = 10
>>    ConstAlg             = Lincs
>>    shake_tol            = 0.0001
>>    lincs_order          = 4
>>    lincs_warnangle      = 30
>>    lincs_iter           = 1
>>    bd_fric              = 0
>>    ld_seed              = 1993
>>    cos_accel            = 0
>>    deform (3x3):
>>       deform[    0]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>>       deform[    1]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>>       deform[    2]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>>    userint1             = 0
>>    userint2             = 0
>>    userint3             = 0
>>    userint4             = 0
>>    userreal1            = 0
>>    userreal2            = 0
>>    userreal3            = 0
>>    userreal4            = 0
>> grpopts:
>>    nrdf:     284.733     2919.27
>>    ref_t:         300         300
>>    tau_t:         0.1         0.1
>> anneal:          No          No
>> ann_npoints:           0           0
>>    acc:	           0           0           0
>>    nfreeze:           N           N           N
>>    energygrp_flags[  0]: 0
>>    efield-x:
>>       n = 0
>>    efield-xt:
>>       n = 0
>>    efield-y:
>>       n = 0
>>    efield-yt:
>>       n = 0
>>    efield-z:
>>       n = 0
>>    efield-zt:
>>       n = 0
>>    bQMMM                = FALSE
>>    QMconstraints        = 0
>>    QMMMscheme           = 0
>>    scalefactor          = 1
>> qm_opts:
>>    ngQM                 = 0
>>
>> Initializing Domain Decomposition on 12 nodes Dynamic load balancing: auto
>> Will sort the charge groups at every domain (re)decomposition Initial
>> maximum inter charge-group distances:
>>     two-body bonded interactions: 0.597 nm, LJ-14, atoms 5 18
>>   multi-body bonded interactions: 0.597 nm, Proper Dih., atoms 5 18
>>     
> Minimum
>   
>> cell size due to bonded interactions: 0.657 nm Maximum distance for 5
>> constraints, at 120 deg. angles, all-trans: 0.820 nm Estimated maximum
>> distance required for P-LINCS: 0.820 nm This distance will limit the DD
>>     
> cell
>   
>> size, you can override this with -rcon Scaling the initial minimum size
>>     
> with
>   
>> 1/0.8 (option -dds) = 1.25 Optimizing the DD grid for 12 cells with a
>> minimum initial size of 1.025 nm The maximum allowed number of cells is: X
>>     
> 2
>   
>> Y 3 Z 2 Domain decomposition grid 2 x 3 x 2, separate PME nodes 0 Domain
>> decomposition nodeid 0, coordinates 0 0 0
>>
>> Table routines are used for coulomb: FALSE
>> Table routines are used for vdw:     FALSE
>> Cut-off's:   NS: 1   Coulomb: 1   LJ: 1
>> System total charge: 1.000
>> Generated table with 1000 data points for 1-4 COUL.
>> Tabscale = 500 points/nm
>> Generated table with 1000 data points for 1-4 LJ6.
>> Tabscale = 500 points/nm
>> Generated table with 1000 data points for 1-4 LJ12.
>> Tabscale = 500 points/nm
>>
>> Enabling SPC water optimization for 487 molecules.
>>
>> Configuring nonbonded kernels...
>> Testing x86_64 SSE support... present.
>>
>>
>> Removing pbc first time
>>
>> Initializing Parallel LINear Constraint Solver
>>
>> ++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
>> B. Hess
>> P-LINCS: A Parallel Linear Constraint Solver for molecular simulation J.
>> Chem. Theory Comput. 4 (2008) pp. 116-122
>> -------- -------- --- Thank You --- -------- --------
>>
>> The number of constraints is 144
>> There are inter charge-group constraints, will communicate selected
>> coordinates each lincs iteration
>>
>> ++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
>> S. Miyamoto and P. A. Kollman
>> SETTLE: An Analytical Version of the SHAKE and RATTLE Algorithms for Rigid
>> Water Models J. Comp. Chem. 13 (1992) pp. 952-962
>> -------- -------- --- Thank You --- -------- --------
>>
>>
>> Linking all bonded interactions to atoms
>>
>> The initial number of communication pulses is: X 1 Y 1 Z 1 The initial
>> domain decomposition cell size is: X 1.21 nm Y 1.05 nm Z 1.11 nm
>>
>> The maximum allowed distance for charge groups involved in interactions
>>     
> is:
>   
>>                  non-bonded interactions           1.000 nm
>>             two-body bonded interactions  (-rdd)   1.000 nm
>>           multi-body bonded interactions  (-rdd)   1.000 nm
>>   atoms separated by up to 5 constraints  (-rcon)  1.054 nm
>>
>> When dynamic load balancing gets turned on, these settings will change to:
>> The maximum number of communication pulses is: X 1 Y 2 Z 1 The minimum
>>     
> size
>   
>> for domain decomposition cells is 0.826 nm The requested allowed shrink of
>> DD cells (option -dds) is: 0.80 The allowed shrink of domain decomposition
>> cells is: X 0.82 Y 0.78 Z 0.90 The maximum allowed distance for charge
>> groups involved in interactions is:
>>                  non-bonded interactions           1.000 nm
>>             two-body bonded interactions  (-rdd)   1.000 nm
>>           multi-body bonded interactions  (-rdd)   0.826 nm
>>   atoms separated by up to 5 constraints  (-rcon)  0.826 nm
>>
>>
>> Making 3D domain decomposition grid 2 x 3 x 2, home cell index 0 0 0
>>
>> Center of mass motion removal mode is Linear We have the following groups
>> for center of mass motion removal:
>>   0:  rest
>>
>> ++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
>> H. J. C. Berendsen, J. P. M. Postma, A. DiNola and J. R. Haak Molecular
>> dynamics with coupling to an external bath J. Chem. Phys. 81 (1984) pp.
>> 3684-3690
>> -------- -------- --- Thank You --- -------- --------
>>
>> There are: 1604 Atoms
>> Charge group distribution at step 0: 45 50 45 42 46 41 44 45 41 47 51 47
>> Grid: 4 x 4 x 4 cells
>>
>> Constraining the starting coordinates (step 0)
>>
>> Constraining the coordinates at t0-dt (step 0) RMS relative constraint
>> deviation after constraining: 2.38e-05 Initial temperature: 299.151 K
>>
>> Which is, of course, identical between the runs.
>>
>> Thanks for any comments/ advice.
>>
>> Jim
>>
>> _______________________________________________
>> gmx-users mailing list    gmx-users at gromacs.org
>> http://lists.gromacs.org/mailman/listinfo/gmx-users
>> Please search the archive at http://www.gromacs.org/search before posting!
>> Please don't post (un)subscribe requests to the list. Use the 
>> www interface or send it to gmx-users-request at gromacs.org.
>> Can't post? Read http://www.gromacs.org/mailing_lists/users.php
>>     
>
>
>   


-- 
-----------------------------------------------
Erik Marklund, PhD student
Laboratory of Molecular Biophysics,
Dept. of Cell and Molecular Biology, Uppsala University.
Husargatan 3, Box 596,    75124 Uppsala, Sweden
phone:    +46 18 471 4537        fax: +46 18 511 755
erikm at xray.bmc.uu.se    http://xray.bmc.uu.se/molbiophys




More information about the gromacs.org_gmx-users mailing list