[gmx-users] Coulomb and Lennnard-Jones parameters

Justin Lemkul jalemkul at vt.edu
Thu Mar 27 13:34:44 CET 2014



On 3/27/14, 6:24 AM, Maria Astón Serrano wrote:
> Dear Gromacs users
>
> I would like to ask for your advice concerning to the input parameters for
> a simulation. I am simulating a protein (1L2Y,
> http://www.rcsb.org/pdb/explore/explore.do?structureId=1L2Y). I obtain the
> timing results below.
>
>       R E A L   C Y C L E   A N D   T I M E   A C C O U N T I N G
>
>   Computing:         Nodes     Number     G-Cycles    Seconds     %
> -----------------------------------------------------------------------
>    Comm. coord.           8     100001      198.994       58.7       1.0
>   Neighbor search        8      20001     1402.166      413.3       7.3
>   Force                        8     100001    10529.644     3103.9    54.6
>   Wait + Comm. F         8     100001      331.925       97.8       1.7
>   PME mesh                 8     100001     6183.435     1822.8     32.0
>   Write traj.                   8        101        3.434        1.0
>     0.0
>   Update                       8     100001      148.251       43.7       0.8
>   Constraints                 8     100001      304.236       89.7       1.6
>   Comm. energies         8      20002       36.774       10.8         0.2
>   Rest                          8                 162.448       47.9
>     0.8
> -----------------------------------------------------------------------
>   Total                         8               19301.307     5689.7
> 100.0
> -----------------------------------------------------------------------
> -----------------------------------------------------------------------
>   PME redist. X/F        8     200002     3957.969     1166.7    20.5
>   PME spread/gather      8     200002     1502.640      443.0     7.8
>   PME 3D-FFT             8     200002      477.460      140.7     2.5
>   PME solve              8     100001      242.220       71.4     1.3
> -----------------------------------------------------------------------
>
> Parallel run - timing based on wallclock.
>
>
> I was expecting the constraint time to take above 15% of the total time.

Why?

> However, I find just 1.6%. I suspect that perhaps the parameters for the
> Coulomb and Lennnard-Jones calculation may be improved: In the md.log file,
> I find:
>
>   Computing:                                    M-Number         M-Flops
>    % Flops
> ------------------------------------------------------------
> ---------------------------------
>    Coul(T) + LJ [W3-W3]                 18217.759964     6959184.306    76.8
>
> Is this wise? May you give me a hint on how to tune the parameters?
>

The W3-W3 identifier indicates a lot of time was spent computing the nonbonded 
interactions between water molecules.  Looks like you have lots of water and 
that's where mdrun spent most of its time.

The input settings (especially rlist, rcoulomb, and rvdw) are a function of the 
force field, not your desires for performance.  Making changes can lead to 
artifacts.  Performance increases as a function of decreasing cutoffs, but at 
the great cost of large errors.

-Justin

>
> These are my input parameters:
>
>      integrator           = md
>     nsteps               = 100000
>     init_step            = 0
>     ns_type              = Grid
>     nstlist              = 5
>     ndelta               = 2
>     nstcomm              = 10
>     comm_mode            = Linear
>     nstlog               = 1000
>     nstxout              = 1000
>     nstvout              = 1000
>     nstfout              = 0
>     nstcalcenergy        = 5
>     nstenergy            = 1000
>     nstxtcout            = 1000
>     init_t               = 0
>     delta_t              = 0.002
>     xtcprec              = 1000
>     nkx                  = 28
>     nky                  = 28
>     nkz                  = 28
>     pme_order            = 4
>     ewald_rtol           = 1e-05
>     ewald_geometry       = 0
>     epsilon_surface      = 0
>     optimize_fft         = FALSE
>     ePBC                 = xyz
>     bPeriodicMols        = FALSE
>     bContinuation        = TRUE
>     bShakeSOR            = FALSE
>     etc                  = V-rescale
>     nsttcouple           = 5
>     epc                  = Parrinello-Rahman
>     epctype              = Isotropic
>     nstpcouple           = 5
>     tau_p                = 2
>     ref_p (3x3):
>        ref_p[    0]={ 1.00000e+00,  0.00000e+00,  0.00000e+00}
>        ref_p[    1]={ 0.00000e+00,  1.00000e+00,  0.00000e+00}
>        ref_p[    2]={ 0.00000e+00,  0.00000e+00,  1.00000e+00}
>     compress (3x3):
>        compress[    0]={ 4.50000e-05,  0.00000e+00,  0.00000e+00}
>        compress[    1]={ 0.00000e+00,  4.50000e-05,  0.00000e+00}
>        compress[    2]={ 0.00000e+00,  0.00000e+00,  4.50000e-05}
>     refcoord_scaling     = No
>     posres_com (3):
>        posres_com[0]= 0.00000e+00
>        posres_com[1]= 0.00000e+00
>        posres_com[2]= 0.00000e+00
>     posres_comB (3):
>        posres_comB[0]= 0.00000e+00
>        posres_comB[1]= 0.00000e+00
>        posres_comB[2]= 0.00000e+00
>     andersen_seed        = 815131
>     rlist                = 1
>     rlistlong            = 1
>     rtpi                 = 0.05
>     coulombtype          = PME
>     rcoulomb_switch      = 0
>     rcoulomb             = 1
>     vdwtype              = Cut-off
>     rvdw_switch          = 0
>     rvdw                 = 1
>     epsilon_r            = 1
>     epsilon_rf           = 1
>     tabext               = 1
>     implicit_solvent     = No
>     gb_algorithm         = Still
>     gb_epsilon_solvent   = 80
>     nstgbradii           = 1
>     rgbradii             = 1
>     gb_saltconc          = 0
>     gb_obc_alpha         = 1
>     gb_obc_beta          = 0.8
>     gb_obc_gamma         = 4.85
>     gb_dielectric_offset = 0.009
>     sa_algorithm         = Ace-approximation
>     sa_surface_tension   = 2.05016
>     DispCorr             = EnerPres
>     free_energy          = no
>     init_lambda          = 0
>     delta_lambda         = 0
>     n_foreign_lambda     = 0
>     sc_alpha             = 0
>     sc_power             = 0
>     sc_sigma             = 0.3
>     sc_sigma_min         = 0.3
>     nstdhdl              = 10
>     separate_dhdl_file   = yes
>     dhdl_derivatives     = yes
>     dh_hist_size         = 0
>     dh_hist_spacing      = 0.1
>     nwall                = 0
>     wall_type            = 9-3
>     wall_atomtype[0]     = -1
>     wall_atomtype[1]     = -1
>     wall_density[0]      = 0
>     wall_density[1]      = 0
>     wall_ewald_zfac      = 3
>     pull                 = no
>     disre                = No
>     disre_weighting      = Conservative
>     disre_mixed          = FALSE
>     dr_fc                = 1000
>     dr_tau               = 0
>     nstdisreout          = 100
>     orires_fc            = 0
>     orires_tau           = 0
>     nstorireout          = 100
>     dihre-fc             = 1000
>     em_stepsize          = 0.01
>     em_tol               = 10
>     niter                = 20
>     fc_stepsize          = 0
>     nstcgsteep           = 1000
>     nbfgscorr            = 10
>     ConstAlg             = Shake
>     shake_tol            = 0.0001
>     lincs_order          = 4
>     lincs_warnangle      = 30
>     lincs_iter           = 1
>     bd_fric              = 0
>     ld_seed              = 1993
>     cos_accel            = 0
>     deform (3x3):
>        deform[    0]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>        deform[    1]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>        deform[    2]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
>     userint1             = 0
>     userint2             = 0
>     userint3             = 0
>     userint4             = 0
>     userreal1            = 0
>     userreal2            = 0
>     userreal3            = 0
>     userreal4            = 0
> grpopts:
>     nrdf:     601.892     16092.1
>     ref_t:         300         300
>     tau_t:         0.1         0.1
> anneal:          No          No
> ann_npoints:           0           0
>     acc:               0           0           0
>     nfreeze:           N           N           N
>     energygrp_flags[  0]: 0
>     efield-x:
>        n = 0
>     efield-xt:
>        n = 0
>     efield-y:
>        n = 0
>     efield-yt:
>        n = 0
>     efield-z:
>        n = 0
>     efield-zt:
>        n = 0
>     bQMMM                = FALSE
>     QMconstraints        = 0
>     QMMMscheme           = 0
>     scalefactor          = 1
> qm_opts:
>     ngQM                 = 0
> Table routines are used for coulomb: TRUE
> Table routines are used for vdw:     FALSE
> Will do PME sum in reciprocal space.
>
> Thank you very much.
>
> Maria
>

-- 
==================================================

Justin A. Lemkul, Ph.D.
Ruth L. Kirschstein NRSA Postdoctoral Fellow

Department of Pharmaceutical Sciences
School of Pharmacy
Health Sciences Facility II, Room 601
University of Maryland, Baltimore
20 Penn St.
Baltimore, MD 21201

jalemkul at outerbanks.umaryland.edu | (410) 706-7441
http://mackerell.umaryland.edu/~jalemkul

==================================================


More information about the gromacs.org_gmx-users mailing list