[gmx-users] calculation of pKa

Rui Neves rppneves at gmail.com
Mon Aug 29 16:31:18 CEST 2016


Dear Gromacs users,

I am trying to perform a pKa calculation of a Cys in a thioredoxin-protein
(Trx) using the FEP implementation of Gromacs 5.1.0.

I am transforming the charge in CYS to that of a CYM in 10 equally-spaced
lambda steps, and then turning off the vdw radii of the hydrogen (HS) in
the thiol terminus of Cys in 20 equally-spaced lambda steps.

I have had no problems concerning the anhilation and redistribution of
charge in Cys.
However, I have had some problems with the anhilation of the vdw radii of
HS.
In this process I turn a HS into a dummy (DU) with no LJ energy of
interaction.
During the BAR analysis with the gmx bar program, I frequently come across
this warning:

*WARNING: Some of these results violate the Second Law of Thermodynamics: *
*         This is can be the result of severe undersampling, or (more
likely)*
*         there is something wrong with the simulations.*

I have tried to read about this in forums. I often read that it is related
to a negative entropy for states A and B to 'interact' with one another,
but there is no simple answer to solve this problem.

I have revised my mdp settings and have managed to solve the issue for the
case of the system comprising only Cys; however, I still cannot solve this
issue for the Trx system.
I tried to extend the simulation from 1 ns to 4 ns/lambda, but I keep
getting the same warning (I attach the bar plot to this mail).

*Temperature: 300 K*

*Detailed results in kT (see help for explanation):*

* lam_A  lam_B        DG     +/-       s_A     +/-       s_B     +/-
stdev     +/- *
*    10     11   -0.0359  0.0005    0.0060  0.0018    0.0070  0.0018
 0.1060  0.0006*
*    11     12   -0.0427  0.0004    0.0120  0.0010    0.0130  0.0010
 0.1103  0.0007*
*    12     13   -0.0414  0.0007    0.0003  0.0005    0.0012  0.0006
 0.1032  0.0007*
*    13     14   -0.0384  0.0008    0.0080  0.0005    0.0087  0.0005
 0.0986  0.0008*
*    14     15   -0.0394  0.0004    0.0053  0.0005    0.0059  0.0005
 0.0959  0.0004*
*    15     16   -0.0322  0.0009   -0.0004  0.0007   -0.0001  0.0007
 0.0834  0.0007*
*    16     17   -0.0267  0.0004    0.0046  0.0009    0.0047  0.0009
 0.0708  0.0002*
*    17     18   -0.0214  0.0011   -0.0002  0.0012   -0.0001  0.0012
 0.0598  0.0006*
*    18     19   -0.0162  0.0003    0.0025  0.0016    0.0026  0.0016
 0.0510  0.0006*
*    19     20   -0.0124  0.0006    0.0007  0.0010    0.0008  0.0010
 0.0424  0.0004*
*    20     21   -0.0094  0.0006    0.0022  0.0007    0.0022  0.0007
 0.0360  0.0004*
*    21     22   -0.0046  0.0007   -0.0014  0.0003   -0.0014  0.0003
 0.0300  0.0004*
*    22     23    0.0010  0.0005   -0.0002  0.0007   -0.0002  0.0007
 0.0239  0.0002*
*    23     25    0.0083  0.0012    0.0031  0.0007    0.0019  0.0004
 0.0364  0.0002*
*    25     26    0.0071  0.0003    0.0002  0.0002    0.0003  0.0004
 0.0138  0.0001*
*    26     27    0.0093  0.0002   -0.0004  0.0002   -0.0004  0.0002
 0.0109  0.0001*
*    27     28    0.0115  0.0001   -0.0002  0.0002   -0.0002  0.0002
 0.0090  0.0001*
*    28     29    0.0126  0.0001    0.0004  0.0002    0.0004  0.0001
 0.0077  0.0001*
*    29     30    0.0130  0.0001    0.0004  0.0000    0.0004  0.0000
 0.0065  0.0000*

*WARNING: Some of these results violate the Second Law of Thermodynamics: *
*         This is can be the result of severe undersampling, or (more
likely)*
*         there is something wrong with the simulations.*


*Final results in kJ/mol:*

*point     10 -     11,   DG -0.0895 +/-  0.0013*
*point     11 -     12,   DG -0.1066 +/-  0.0010*
*point     12 -     13,   DG -0.1032 +/-  0.0019*
*point     13 -     14,   DG -0.0959 +/-  0.0019*
*point     14 -     15,   DG -0.0983 +/-  0.0009*
*point     15 -     16,   DG -0.0802 +/-  0.0022*
*point     16 -     17,   DG -0.0666 +/-  0.0010*
*point     17 -     18,   DG -0.0533 +/-  0.0028*
*point     18 -     19,   DG -0.0403 +/-  0.0007*
*point     19 -     20,   DG -0.0309 +/-  0.0014*
*point     20 -     21,   DG -0.0235 +/-  0.0016*
*point     21 -     22,   DG -0.0115 +/-  0.0017*
*point     22 -     23,   DG  0.0025 +/-  0.0013*
*point     23 -     25,   DG  0.0206 +/-  0.0031*
*point     25 -     26,   DG  0.0176 +/-  0.0008*
*point     26 -     27,   DG  0.0232 +/-  0.0004*
*point     27 -     28,   DG  0.0288 +/-  0.0002*
*point     28 -     29,   DG  0.0314 +/-  0.0002*
*point     29 -     30,   DG  0.0325 +/-  0.0001*

*total     10 -     30,   DG -0.6432 +/-  0.0037*

I have also analysed different timeblocks of the simulation, to no avail.
I have also tested the inclusion of the couple-moltype keyword, but the
problem remains. I get different free-energy estimates though. Does anyone
know what exactly means the couple-moltype keyword?

My mdp settings are as follow:


*; Run control*
*integrator               = sd       ; Langevin dynamics*
*tinit                    = 0*
*dt                       = 0.002*
*nsteps                   = 2000000   ; 4 ns*
*nstcomm                  = 100*
*comm-mode                = Linear*
*; Output control*
*nstxout                  = 0  *
*nstvout                  = 0  *
*nstfout                  = 0*
*nstlog                   = 1000*
*nstenergy                = 1000*
*nstxout-compressed       = 1000*
*nstcalcenergy            = 100*
*; Neighborsearching and short-range nonbonded interactions*
*cutoff-scheme            = verlet*
*nstlist                  = 10*
*ns_type                  = grid*
*pbc                      = xyz*
*rlist                    = 1.0*
*; Electrostatics*
*coulombtype              = PME*
*rcoulomb-switch          = 0.96*
*rcoulomb                 = 1.0*
*coulomb-modifier         = Potential-shift-Verlet*
*; van der Waals*
*vdwtype                  = cutoff*
*vdw-modifier             = Potential-shift-Verlet*
*rvdw-switch              = 0.96*
*rvdw                     = 1.0*
*; Apply long range dispersion corrections for Energy and Pressure*
*DispCorr                  = EnerPres*
*; Spacing for the PME/PPPM FFT grid*
*fourierspacing           = 0.12*
*; EWALD/PME/PPPM parameters*
*pme_order                = 6*
*ewald_rtol               = 1e-06*
*epsilon_surface          = 0*
*; Temperature coupling*
*; tcoupl is implicitly handled by the sd integrator*
*tc_grps                  = Protein Water_and_ions*
*tau_t                    = 1.0 1.0*
*ref_t                    = 300 300*
*; Pressure coupling is on for NPT*
*Pcoupl                   = Parrinello-Rahman *
*tau_p                    = 1.0*
*compressibility          = 4.5e-05*
*ref_p                    = 1.0 *
*; Free energy control stuff*
*free_energy              = yes*
*init_lambda_state        = $LAMBDA*
*delta_lambda             = 0*
*calc_lambda_neighbors    = -1        ; all neighboring windows*
*; Vectors of lambda specified here*
*; Each combination is an index that is retrieved from init_lambda_state
for each simulation*
*; init_lambda_state        0    1    2    3    4    5    6    7    8    9
   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24
  25   26   27   28   29   30*
*vdw_lambdas              = 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65
0.70 0.75 0.80 0.85 0.90 0.95 1.00*
*coul_lambdas             = 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80
0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00*
*; We are not transforming any bonded or restrained interactions*
*bonded_lambdas           = 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00*
*restraint_lambdas        = 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00*
*; Masses are not changing (particle identities are the same at lambda = 0
and lambda = 1)*
*mass_lambdas             = 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00*
*; Not doing simulated temperting here*
*temperature_lambdas      = 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00*
*; Options for the decoupling*
*sc-alpha                 = 0.5*
*sc-coul                  = no       ; linear interpolation of Coulomb
(none in this case)*
*sc-power                 = 1.0*
*sc-sigma                 = 0.3 *
*couple-moltype           = Protein_chain_A*
*couple-intramol          = yes*
*nstdhdl                  = 10*
*; Do not generate velocities*
*gen_vel                  = no *
*; options for bonds*
*constraints              = h-bonds *
*; Type of constraint algorithm*
*constraint-algorithm     = lincs*
*; Constrain the starting configuration*
*; since we are continuing from NPT*
*continuation             = yes *
*; Highest order in the expansion of the constraint coupling matrix*
*lincs-order              = 12*

I also post the changes that I made to create the B-state for the Cys32
residue in Trx.

*; Include forcefield parameters*
*#include "amber99sb-ildn.ff/forcefield.itp"*
*[ atomtypes ]*
*;name   bond_type     mass     charge   ptype   sigma         epsilon
  Amb*
* DU       HS          0.00000  0.00000   A     1.06908e-01   0.00000e+00 ;
0.60  0.0000*

*[ moleculetype ]*
*; Name            nrexcl*
*Protein_chain_A     3*

*[ atoms ]*
* ( ... )*
*; residue  32 CYS rtp CYS  q  0.0*
*   478          N     32    CYS      N    478    -0.4157      14.01    N
 -0.4157      14.01   ; qtot -1.416*
*   479          H     32    CYS      H    479     0.2719      1.008    H
  0.2719      1.008   ; qtot -1.144*
*   480         CT     32    CYS     CA    480     0.0213      12.01   CT
 -0.0351      12.01   ; qtot -1.123*
*   481         H1     32    CYS     HA    481     0.1124      1.008   H1
  0.0508      1.008   ; qtot -1.01*
*   482         CT     32    CYS     CB    482    -0.1231      12.01   CT
 -0.2413      12.01   ; qtot -1.133*
*   483         H1     32    CYS    HB1    483     0.1112      1.008   H1
  0.1122      1.008   ; qtot -1.022*
*   484         H1     32    CYS    HB2    484     0.1112      1.008   H1
  0.1122      1.008   ; qtot -0.9108*
*   485         SH     32    CYS     SG    485    -0.3119      32.06   SH
 -0.8844      32.06   ; qtot -1.223*
*   486         HS     32    CYS     HG    486     0.1933      1.008   DU
  0.0000      1.008   ; qtot -1.029*
*   487          C     32    CYS      C    487     0.5973      12.01    C
  0.5973      12.01   ; qtot -0.4321*
*   488          O     32    CYS      O    488    -0.5679         16    O
 -0.5679         16   ; qtot -1*
* (...)*

Do you have any ideas on what else I can try?
Thank you so much for your time.

Regards,

Rui PP Neves


More information about the gromacs.org_gmx-users mailing list