[gmx-users] request for dihedral PMF test system or complete alanine dipeptide topology file

David Mobley dmobley at gmail.com
Wed Apr 25 23:12:29 CEST 2007


Chris,

I'll have to assume you know what you're doing with using impropers to
calculate PMFs. I've done this using the dihedral restraints code.
Have you double-checked that? That's the first place I would look.

Otherwise, I don't have a great test system for you.

David


On 4/25/07, Chris Neale <chris.neale at utoronto.ca> wrote:
> Does anybody have a good test system for reproducing the PMF about a
> dihedral? I believe that my procedure is correct, and I have
> successfully reproduced a 1d dihedral PMF for a 4 atom chain system
> simulated in the absence of nonbonded interactions.
>
> However, my results using an oplsaa interpretation of the alanine
> dipeptide ACE-ALA-NAC disagree with the literature both in unconstrained
> runs and in a 2D phi-psi PMFs. For example my unconstrained runs of 25ns
> only sample beta space and my PMF shows a 6kcal/mol barrier for
> transition over psi from beta to alphaR. On the other hand
> (Hu,Elstner,Hermans,Proteins 2003) show that 6ns is enough to
> significantly sample both Beta and alphaR space and (Ponder,Case,
> Adv.Prot.Chem 2003) indicates that the barrier for this beta-alphaR
> transition should be between 1.5 and 2 kcal/mol.
>
> If somebody has a good test system that would be greatly appreciated. I
> am also including my alanine dipeptide topology file, but I am fairly
> sure that it is correct. The only thing that I still question is the
> difference between the C-N-CT-HC dihedral parameters (c-terminal in
> alanine dipeptide) and C-N-CT_2-HC dihedral parameters (involved where
> i+1 is an amino acid residue and not NAC) in ffoplsaabon.itp. However, I
> have tested the system while modifying C-N-CT-HC to all zeroes and it
> does not change the gross morphology of my results.
>
> In addition I have defined the following types at the beginning of my
> .top file to correspond to the CT=CT_2 case as I have previously posted
> here:
> http://www.gromacs.org/pipermail/gmx-users/2006-September/023875.html.
> As a further test I have generated PMFs without the inclusion of these
> additional parameters, allowing them to default to all zeroes and it
> does not change the gross morphology of my results.
> [ dihedraltypes ]
>   CT     C      N      CT_2    3     30.28798  -4.81160 -25.47638
> 0.00000   0.00000   0.00000 ; peptide - V1 changed to 2.3
>   CT_2   C      N      CT      3     30.28798  -4.81160 -25.47638
> 0.00000   0.00000   0.00000 ; peptide - V1 changed to 2.3
>
> Before moving on to my .itp file, here are a couple of other points of
> interest for anybody embarking on a dihedral PMF determination:
>   (i) g_chi uses non-standard dihedrals, use g_rama instead.
>   (ii) the default xtc_precision=1000 may not be large enough to get the
> most out of your data. The default value here is fine for distances, but
> the precision in a dihedral will be less than the precision in the
> coordinates when the dihedral is calculated from the saved coordinates.
>
> Many thanks,
> Chris.
>
> $cat alaninedipeptide.itp
>
> [ moleculetype ]
> ; Name            nrexcl
> dialanine             3
>
> [ atoms ]
> ;   nr       type  resnr residue  atom   cgnr     charge       mass
> typeB    chargeB      massB
>      1   opls_135      1    ACE    CH3      1      -0.18     12.011   ;
> qtot -0.18
>      2   opls_140      1    ACE   HH31      1       0.06      1.008   ;
> qtot -0.12
>      3   opls_140      1    ACE   HH32      1       0.06      1.008   ;
> qtot -0.06
>      4   opls_140      1    ACE   HH33      1       0.06      1.008   ;
> qtot 0
>      5   opls_235      1    ACE      C      2        0.5     12.011   ;
> qtot 0.5
>      6   opls_236      1    ACE      O      2       -0.5    15.9994   ;
> qtot 0
>      7   opls_238      2    ALA      N      3       -0.5    14.0067   ;
> qtot -0.5
>      8   opls_241      2    ALA      H      3        0.3      1.008   ;
> qtot -0.2
>      9  opls_224B      2    ALA     CA      3       0.14     12.011   ;
> qtot -0.06
>     10   opls_140      2    ALA     HA      3       0.06      1.008   ;
> qtot 0
>     11   opls_135      2    ALA     CB      4      -0.18     12.011   ;
> qtot -0.18
>     12   opls_140      2    ALA    HB1      4       0.06      1.008   ;
> qtot -0.12
>     13   opls_140      2    ALA    HB2      4       0.06      1.008   ;
> qtot -0.06
>     14   opls_140      2    ALA    HB3      4       0.06      1.008   ;
> qtot 0
>     15   opls_235      2    ALA      C      5        0.5     12.011   ;
> qtot 0.5
>     16   opls_236      2    ALA      O      5       -0.5    15.9994   ;
> qtot 0
>     17   opls_238      3    NAC      N      6       -0.5    14.0067   ;
> qtot -0.5
>     18   opls_241      3    NAC      H      6        0.3      1.008   ;
> qtot -0.2
>     19   opls_242      3    NAC    CH3      7       0.02     12.011   ;
> qtot -0.18
>     20   opls_140      3    NAC   HH31      7       0.06      1.008   ;
> qtot -0.12
>     21   opls_140      3    NAC   HH32      7       0.06      1.008   ;
> qtot -0.06
>     22   opls_140      3    NAC   HH33      7       0.06      1.008   ;
> qtot 0
>
> [ bonds ]
> ;  ai    aj funct            c0            c1            c2            c3
>     1     2     1
>     1     3     1
>     1     4     1
>     1     5     1
>     5     6     1
>     5     7     1
>     7     8     1
>     7     9     1
>     9    10     1
>     9    11     1
>     9    15     1
>    11    12     1
>    11    13     1
>    11    14     1
>    15    16     1
>    15    17     1
>    17    18     1
>    17    19     1
>    19    20     1
>    19    21     1
>    19    22     1
>
> [ pairs ]
> ;  ai    aj funct            c0            c1            c2            c3
>     1     8     1
>     1     9     1
>     2     6     1
>     2     7     1
>     3     6     1
>     3     7     1
>     4     6     1
>     4     7     1
>     5    10     1
>     5    11     1
>     5    15     1
>     6     8     1
>     6     9     1
>     7    12     1
>     7    13     1
>     7    14     1
>     7    16     1
>     7    17     1
>     8    10     1
>     8    11     1
>     8    15     1
>     9    18     1
>     9    19     1
>    10    12     1
>    10    13     1
>    10    14     1
>    10    16     1
>    10    17     1
>    11    16     1
>    11    17     1
>    12    15     1
>    13    15     1
>    14    15     1
>    15    20     1
>    15    21     1
>    15    22     1
>    16    18     1
>    16    19     1
>    18    20     1
>    18    21     1
>    18    22     1
>
> [ angles ]
> ;  ai    aj    ak funct            c0            c1
> c2            c3
>     2     1     3     1
>     2     1     4     1
>     2     1     5     1
>     3     1     4     1
>     3     1     5     1
>     4     1     5     1
>     1     5     6     1
>     1     5     7     1
>     6     5     7     1
>     5     7     8     1
>     5     7     9     1
>     8     7     9     1
>     7     9    10     1
>     7     9    11     1
>     7     9    15     1
>    10     9    11     1
>    10     9    15     1
>    11     9    15     1
>     9    11    12     1
>     9    11    13     1
>     9    11    14     1
>    12    11    13     1
>    12    11    14     1
>    13    11    14     1
>     9    15    16     1
>     9    15    17     1
>    16    15    17     1
>    15    17    18     1
>    15    17    19     1
>    18    17    19     1
>    17    19    20     1
>    17    19    21     1
>    17    19    22     1
>    20    19    21     1
>    20    19    22     1
>    21    19    22     1
>
> [ dihedrals ]
> ;  ai    aj    ak    al funct            c0            c1
> c2            c3            c4            c5
>     2     1     5     6     3
>     2     1     5     7     3
>     3     1     5     6     3
>     3     1     5     7     3
>     4     1     5     6     3
>     4     1     5     7     3
>     1     5     7     8     3
>     1     5     7     9     3
>     6     5     7     8     3
>     6     5     7     9     3
>     5     7     9    10     3
>     5     7     9    11     3
>     5     7     9    15     3
>     8     7     9    10     3
>     8     7     9    11     3
>     8     7     9    15     3
>     7     9    11    12     3
>     7     9    11    13     3
>     7     9    11    14     3
>    10     9    11    12     3
>    10     9    11    13     3
>    10     9    11    14     3
>    15     9    11    12     3
>    15     9    11    13     3
>    15     9    11    14     3
>     7     9    15    16     3
>     7     9    15    17     3
>    10     9    15    16     3
>    10     9    15    17     3
>    11     9    15    16     3
>    11     9    15    17     3
>     9    15    17    18     3
>     9    15    17    19     3
>    16    15    17    18     3
>    16    15    17    19     3
>    15    17    19    20     3
>    15    17    19    21     3
>    15    17    19    22     3
>    18    17    19    20     3
>    18    17    19    21     3
>    18    17    19    22     3
>
> [ dihedrals ]
> ;  ai    aj    ak    al funct            c0            c1
> c2            c3
>     1     7     5     6     1    improper_O_C_X_Y
>     5     9     7     8     1    improper_Z_N_X_Y
>     9    17    15    16     1    improper_O_C_X_Y
>    15    19    17    18     1    improper_Z_N_X_Y
>
> _______________________________________________
> gmx-users mailing list    gmx-users at gromacs.org
> http://www.gromacs.org/mailman/listinfo/gmx-users
> Please search the archive at http://www.gromacs.org/search before posting!
> Please don't post (un)subscribe requests to the list. Use the
> www interface or send it to gmx-users-request at gromacs.org.
> Can't post? Read http://www.gromacs.org/mailing_lists/users.php
>



More information about the gromacs.org_gmx-users mailing list