[gmx-users] large free energy difference of mutating ATP to GTP in solution using FEP method in Gromacs-4.6.5

dbaogen dbaogen at gmail.com
Sat May 24 07:28:53 CEST 2014


Dear all,

           I want to calculate the free energy difference of mutating ATP to GTP in solution using FEP method. Firstly, the hybrid topology and structure files for A (ATP) and B (GTP) state using dummy atoms were constructed. Secondly,  the system is running for 10 ns to reach an equilibrium state.  And then the structure at 10 ns is as the starting structure to carry out FEP calculation. In the course of FEP, the coulomb interaction was firstly changed, and then the VDW interactions. Total 32 lambda points are set in the mdp file shown in the following:
integrator               = sd
nsteps                   = 100000
dt                  = 0.002
nstenergy                = 1000
nstlog                   = 5000
nstcalcenergy            = 100
nstcomm                  = 1
cutoff-scheme            = group
rlist                    = 1.2
dispcorr                 = EnerPres
vdw-type                 = switch
;cut-off lengths
rvdw                     = 1.1
rvdw-switch              = 1
; Coulomb interactions 
coulombtype              = pme
rcoulomb                 = 1.2
fourierspacing           = 0.12
; Constraints
constraints              = all-bonds
; set temperature to 310K
tcoupl                   = v-rescale
tc-grps                  = system
tau-t                    = 1.0 
ref-t                    = 310 
; pressure control
pcoupl              = Parrinello-Rahman
ref-p                = 1
compressibility        = 4.5e-5
tau-p                = 0.5 

; and set the free energy parameters
free-energy              = yes 
sc-power                 = 1    
sc-sigma                 = 0.3 
sc-alpha                 = 0.5
sc-coul                  = no 
sc-r-power               = 6    
; we still want the molecule to interact with itself at lambda=0
couple-intramol          = no  
couple-lambda0           = vdw-q
couple-lambda1           = vdw-q
; $LAMBDA$ changed from 0 to 32
init-lambda-state        = $LAMBDA$
nstdhdl                  = 100
calc-lambda-neighbors    = 1
fep-lambdas =  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.03 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1.0
;change electrostatic and then LJ interaction
coul-lambdas = 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.00 1.00 1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.0
vdw-lambdas  = 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.03 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1.0

atom part of hybrid topology file is :
[ atoms ]
;   nr       type  resnr residue  atom   cgnr     charge       mass  typeB    chargeB
     1         O3      1    RAG    O1G      1   -0.95260  16.000000
     2          P      1    RAG     PG      2    1.26500  31.000000
     3         O3      1    RAG    O2G      3   -0.95260  16.000000
     4         O3      1    RAG    O3G      4   -0.95260  16.000000
     5         OS      1    RAG    O3B      5   -0.53220  16.000000
     6          P      1    RAG     PB      6    1.38520  31.000000
     7         O2      1    RAG    O1B      7   -0.88940  16.000000
     8         O2      1    RAG    O2B      8   -0.88940  16.000000
     9         OS      1    RAG    O3A      9   -0.56890  16.000000
    10          P      1    RAG     PA     10    1.25320  31.000000
    11         O2      1    RAG    O1A     11   -0.87990  16.000000
    12         O2      1    RAG    O2A     12   -0.87990  16.000000
    13         OS      1    RAG    O5*     13   -0.59870  16.000000
    14         CT      1    RAG    C5*     14    0.05580  12.000000
    15         H1      1    RAG    H50     15    0.06790   1.008000
    16         H1      1    RAG    H51     16    0.06790   1.008000
    17         CT      1    RAG    C4*     17    0.10650  12.000000
    18         H1      1    RAG    H40     18    0.11740   1.008000
    19         OS      1    RAG    O4*     19   -0.35480  16.000000
    20         CT      1    RAG    C1*     20    0.03940  12.000000   CT     0.01910  12.000000
    21         H2      1    RAG    H10     21    0.20070   1.008000   H2     0.20060   1.008000
    22         N*      1    RAG     N9     22   -0.02510  14.000000   N*     0.04920  14.000000
    23         CK      1    RAG     C8     23    0.20060  12.000000   CK     0.13740  12.000000
    24         H5      1    RAG    H80     24    0.15530   1.008000   H5     0.16400   1.008000
    25         NB      1    RAG     N7     25   -0.60730  14.000000   NB    -0.57090  14.000000
    26         CB      1    RAG     C5     26    0.05150  12.000000   CB     0.17440  12.000000
    27         CA      1    RAG     C6     27    0.70090  12.000000    C     0.47700  12.000000
    28         N2      1    RAG     N6     28   -0.90190  14.000000    O     -0.55970  16.000000
    29          H      1    RAG    H60     29    0.41150   1.008000  DUM_1   0.000000   1.0080
    30          H      1    RAG    H61     30    0.41150   1.008000  DUM_1   0.000000   1.0080
    31         NC      1    RAG     N1     31   -0.76150  14.000000   NA     -0.47870  14.000000
    32         CQ      1    RAG     C2     32    0.58750  12.000000   CA     0.76570  12.000000
    33         H5      1    RAG     H2     33    0.04730   1.008000   N2     -0.96720  14.000000
    34         NC      1    RAG     N3     34   -0.69970  14.000000   NC     -0.63230  14.000000
    35         CB      1    RAG     C4     35    0.30530  12.000000   CB     0.12220  12.000000
    36         CT      1    RAG    C3*     36    0.20220  12.000000
    37         H1      1    RAG    H30     37    0.06150   1.008000
    38         OH      1    RAG    O3*     38   -0.65410  16.000000
    39         HO      1    RAG    H3'     39    0.43760   1.008000
    40         CT      1    RAG    C2*     40    0.06700  12.000000
    41         H1      1    RAG    H20     41    0.09720   1.008000
    42         OH      1    RAG    O2*     42   -0.61390  16.000000
    43         HO      1    RAG    H2'     43    0.41860   1.008000
; add dummy atoms
    44       DUM_1     1    RAG    DH1     44    0.000000  1.008000   H      0.34240   1.008000
    45       DUM_1     1    RAG   DH21     45    0.000000  1.008000   H      0.43640   1.008000
    46       DUM_1     1    RAG   DH22     46    0.000000  1.008000   H      0.43640   1.008000

After  the FEP simulation is done, g_bar program is used to obtain the free energy difference. The value is about -260 kJ/mol which is too large. Because the difference between ATP and GTP is only base part.  In addition, if the other parameters are kept and only change sc-coul = yes and couple-intramol  = yes, the free energy difference is -160 kJ/mol. So far, I have not found the solution. Could anyone give me some suggestions about this? whether the mdp file or top for FEP calculation is wrong?  The equilibrium hybrid structure  and topology files are enclosed. Thanks for your great help!


Best 

Duan Baogen
Beijing Computational Science Research Center




dbaogen


More information about the gromacs.org_gmx-users mailing list